DEFINITION lt_x_plus_x_Sy()
TYPE =
∀x:nat.∀y:nat.(lt x (plus x (S y)))
BODY =
assume x: nat
assume y: nat
(h1)
by (le_plus_r . .)
we proved le x (plus y x)
by (le_n_S . . previous)
we proved le (S x) (S (plus y x))
by (le_n_S . . previous)
we proved le (S (S x)) (S (S (plus y x)))
by (le_S_n . . previous)
we proved le (S x) (S (plus y x))
lt x (plus (S y) x)
end of h1
(h2)
by (plus_sym . .)
eq nat (plus x (S y)) (plus (S y) x)
end of h2
by (eq_ind_r . . . h1 . h2)
we proved lt x (plus x (S y))
we proved ∀x:nat.∀y:nat.(lt x (plus x (S y)))