DEFINITION lt_x_O()
TYPE =
∀x:nat.(lt x O)→∀P:Prop.P
BODY =
assume x: nat
we must prove (lt x O)→∀P:Prop.P
or equivalently (le (S x) O)→∀P:Prop.P
suppose H: le (S x) O
assume P: Prop
(H_y)
by (le_n_O_eq . H)
eq nat O (S x)
end of H_y
(H0)
we proceed by induction on H_y to prove <λ:nat.Prop> CASE S x OF O⇒True | S ⇒False
case refl_equal : ⇒
the thesis becomes <λ:nat.Prop> CASE O OF O⇒True | S ⇒False
consider I
we proved True
<λ:nat.Prop> CASE O OF O⇒True | S ⇒False
<λ:nat.Prop> CASE S x OF O⇒True | S ⇒False
end of H0
consider H0
we proved <λ:nat.Prop> CASE S x OF O⇒True | S ⇒False
that is equivalent to False
we proceed by induction on the previous result to prove P
we proved P
we proved (le (S x) O)→∀P:Prop.P
that is equivalent to (lt x O)→∀P:Prop.P
we proved ∀x:nat.(lt x O)→∀P:Prop.P