DEFINITION lt_plus_minus_r()
TYPE =
∀x:nat.∀y:nat.(lt x y)→(eq nat y (S (plus (minus y (S x)) x)))
BODY =
assume x: nat
assume y: nat
suppose H: lt x y
(h1)
by (lt_plus_minus . . H)
eq nat y (S (plus x (minus y (S x))))
end of h1
(h2)
by (plus_sym . .)
eq nat (plus (minus y (S x)) x) (plus x (minus y (S x)))
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat y (S (plus (minus y (S x)) x))
we proved
∀x:nat.∀y:nat.(lt x y)→(eq nat y (S (plus (minus y (S x)) x)))