DEFINITION lt_plus_minus()
TYPE =
∀x:nat.∀y:nat.(lt x y)→(eq nat y (S (plus x (minus y (S x)))))
BODY =
assume x: nat
assume y: nat
suppose H: lt x y
consider H
we proved lt x y
that is equivalent to le (S x) y
by (le_plus_minus . . previous)
we proved eq nat y (plus (S x) (minus y (S x)))
that is equivalent to eq nat y (S (plus x (minus y (S x))))
we proved
∀x:nat.∀y:nat.(lt x y)→(eq nat y (S (plus x (minus y (S x)))))