DEFINITION lt_le_minus()
TYPE =
∀x:nat.∀y:nat.(lt x y)→(le x (minus y (S O)))
BODY =
assume x: nat
assume y: nat
suppose H: lt x y
(h1)
consider H
we proved lt x y
le (plus (S O) x) y
end of h1
(h2)
by (plus_sym . .)
eq nat (plus x (S O)) (plus (S O) x)
end of h2
by (eq_ind_r . . . h1 . h2)
we proved le (plus x (S O)) y
by (le_minus . . . previous)
we proved le x (minus y (S O))
we proved ∀x:nat.∀y:nat.(lt x y)→(le x (minus y (S O)))