DEFINITION lt_eq_gt_e()
TYPE =
∀x:nat
.∀y:nat
.∀P:Prop
.(lt x y)→P
→((eq nat x y)→P)→((lt y x)→P)→P
BODY =
assume x: nat
assume y: nat
assume P: Prop
suppose H: (lt x y)→P
suppose H0: (eq nat x y)→P
suppose H1: (lt y x)→P
suppose H2: le y x
suppose H3: eq nat y x
by (sym_eq . . . H3)
we proved eq nat x y
by (H0 previous)
we proved P
we proved (eq nat y x)→P
by (lt_eq_e . . . H1 previous H2)
we proved P
we proved (le y x)→P
by (lt_le_e . . . H previous)
we proved P
we proved
∀x:nat
.∀y:nat
.∀P:Prop
.(lt x y)→P
→((eq nat x y)→P)→((lt y x)→P)→P