DEFINITION le_plus_minus_sym()
TYPE =
∀n:nat.∀m:nat.(le n m)→(eq nat m (plus (minus m n) n))
BODY =
assume n: nat
assume m: nat
suppose H: le n m
(h1)
by (le_plus_minus . . H)
eq nat m (plus n (minus m n))
end of h1
(h2)
by (plus_sym . .)
eq nat (plus (minus m n) n) (plus n (minus m n))
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat m (plus (minus m n) n)
we proved ∀n:nat.∀m:nat.(le n m)→(eq nat m (plus (minus m n) n))