DEFINITION le_n_pred()
TYPE =
∀n:nat.∀m:nat.(le n m)→(le (pred n) (pred m))
BODY =
assume n: nat
assume m: nat
suppose H: le n m
we proceed by induction on H to prove le (pred n) (pred m)
case le_n : ⇒
the thesis becomes le (pred n) (pred n)
by (le_n .)
le (pred n) (pred n)
case le_S : m0:nat :le n m0 ⇒
the thesis becomes le (pred n) (pred (S m0))
(H1) by induction hypothesis we know le (pred n) (pred m0)
by (le_pred_n .)
we proved le (pred m0) m0
by (le_trans . . . H1 previous)
we proved le (pred n) m0
le (pred n) (pred (S m0))
we proved le (pred n) (pred m)
we proved ∀n:nat.∀m:nat.(le n m)→(le (pred n) (pred m))