DEFINITION le_minus_minus()
TYPE =
∀x:nat
.∀y:nat
.(le x y)→∀z:nat.(le y z)→(le (minus y x) (minus z x))
BODY =
assume x: nat
assume y: nat
suppose H: le x y
assume z: nat
suppose H0: le y z
(h1)
by (le_trans . . . H H0)
we proved le x z
by (le_plus_minus_r . . previous)
we proved eq nat (plus x (minus z x)) z
by (eq_ind_r . . . H0 . previous)
le y (plus x (minus z x))
end of h1
(h2)
by (le_plus_minus_r . . H)
eq nat (plus x (minus y x)) y
end of h2
by (eq_ind_r . . . h1 . h2)
we proved le (plus x (minus y x)) (plus x (minus z x))
by (simpl_le_plus_l . . . previous)
we proved le (minus y x) (minus z x)
we proved
∀x:nat
.∀y:nat
.(le x y)→∀z:nat.(le y z)→(le (minus y x) (minus z x))