DEFINITION le_minus()
TYPE =
∀x:nat.∀z:nat.∀y:nat.(le (plus x y) z)→(le x (minus z y))
BODY =
assume x: nat
assume z: nat
assume y: nat
suppose H: le (plus x y) z
by (minus_plus_r . .)
we proved eq nat (minus (plus x y) y) x
we proceed by induction on the previous result to prove le x (minus z y)
case refl_equal : ⇒
the thesis becomes le (minus (plus x y) y) (minus z y)
by (le_plus_r . .)
we proved le y (plus x y)
by (le_minus_minus . . previous . H)
le (minus (plus x y) y) (minus z y)
we proved le x (minus z y)
we proved ∀x:nat.∀z:nat.∀y:nat.(le (plus x y) z)→(le x (minus z y))