DEFINITION le_Sx_x()
TYPE =
∀x:nat.(le (S x) x)→∀P:Prop.P
BODY =
assume x: nat
suppose H: le (S x) x
assume P: Prop
(H0) consider le_Sn_n
by (H0 . H)
we proved False
we proceed by induction on the previous result to prove P
we proved P
we proved ∀x:nat.(le (S x) x)→∀P:Prop.P