DEFINITION le_S_minus()
TYPE =
∀d:nat.∀h:nat.∀n:nat.(le (plus d h) n)→(le d (S (minus n h)))
BODY =
assume d: nat
assume h: nat
assume n: nat
suppose H: le (plus d h) n
(H0)
by (le_plus_l . .)
we proved le d (plus d h)
by (le_trans . . . previous H)
le d n
end of H0
by (le_minus . . . H)
we proved le d (minus n h)
by (le_S . . previous)
we proved le d (S (minus n h))
we proved ∀d:nat.∀h:nat.∀n:nat.(le (plus d h) n)→(le d (S (minus n h)))