DEFINITION wf3_pr3_conf()
TYPE =
       g:G.c1:C.t1:T.t2:T.(pr3 c1 t1 t2)c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t1 u)(pr3 c2 t1 t2)
BODY =
        assume gG
        assume c1C
        assume t1T
        assume t2T
        suppose Hpr3 c1 t1 t2
          we proceed by induction on H to prove c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t1 u)(pr3 c2 t1 t2)
             case pr3_refl : t:T 
                the thesis becomes c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t u)(pr3 c2 t t)
                    assume c2C
                    suppose wf3 g c1 c2
                    assume uT
                    suppose ty3 g c1 t u
                      by (pr3_refl . .)
                      we proved pr3 c2 t t
c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t u)(pr3 c2 t t)
             case pr3_sing : t3:T t4:T H0:pr2 c1 t4 t3 t5:T :pr3 c1 t3 t5 
                the thesis becomes c2:C.H3:(wf3 g c1 c2).u:T.H4:(ty3 g c1 t4 u).(pr3 c2 t4 t5)
                (H2) by induction hypothesis we know c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t3 u)(pr3 c2 t3 t5)
                    assume c2C
                    suppose H3wf3 g c1 c2
                    assume uT
                    suppose H4ty3 g c1 t4 u
                      (h1
                         by (wf3_pr2_conf . . . . H0 . H3 . H4)
pr2 c2 t4 t3
                      end of h1
                      (h2
                         by (ty3_sred_pr2 . . . H0 . . H4)
                         we proved ty3 g c1 t3 u
                         by (H2 . H3 . previous)
pr3 c2 t3 t5
                      end of h2
                      by (pr3_sing . . . h1 . h2)
                      we proved pr3 c2 t4 t5
c2:C.H3:(wf3 g c1 c2).u:T.H4:(ty3 g c1 t4 u).(pr3 c2 t4 t5)
          we proved c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t1 u)(pr3 c2 t1 t2)
       we proved g:G.c1:C.t1:T.t2:T.(pr3 c1 t1 t2)c2:C.(wf3 g c1 c2)u:T.(ty3 g c1 t1 u)(pr3 c2 t1 t2)