DEFINITION wf3_pr2_conf()
TYPE =
∀g:G.∀c1:C.∀t1:T.∀t2:T.(pr2 c1 t1 t2)→∀c2:C.(wf3 g c1 c2)→∀u:T.(ty3 g c1 t1 u)→(pr2 c2 t1 t2)
BODY =
assume g: G
assume c1: C
assume t1: T
assume t2: T
suppose H: pr2 c1 t1 t2
we proceed by induction on H to prove ∀c2:C.(wf3 g c1 c2)→∀u:T.(ty3 g c1 t1 u)→(pr2 c2 t1 t2)
case pr2_free : c:C t3:T t4:T H0:pr0 t3 t4 ⇒
the thesis becomes ∀c2:C.(wf3 g c c2)→∀u:T.(ty3 g c t3 u)→(pr2 c2 t3 t4)
assume c2: C
suppose : wf3 g c c2
assume u: T
suppose : ty3 g c t3 u
by (pr2_free . . . H0)
we proved pr2 c2 t3 t4
∀c2:C.(wf3 g c c2)→∀u:T.(ty3 g c t3 u)→(pr2 c2 t3 t4)
case pr2_delta : c:C d:C u:T i:nat H0:getl i c (CHead d (Bind Abbr) u) t3:T t4:T H1:pr0 t3 t4 t:T H2:subst0 i u t4 t ⇒
the thesis becomes ∀c2:C.∀H3:(wf3 g c c2).∀u0:T.∀H4:(ty3 g c t3 u0).(pr2 c2 t3 t)
assume c2: C
suppose H3: wf3 g c c2
assume u0: T
suppose H4: ty3 g c t3 u0
(H_y) by (ty3_sred_pr0 . . H1 . . . H4) we proved ty3 g c t4 u0
(H_x)
by (ty3_getl_subst0 . . . . H_y . . . H2 . . . H0)
ex T λw:T.ty3 g d u w
end of H_x
(H5) consider H_x
we proceed by induction on H5 to prove pr2 c2 t3 t
case ex_intro : x:T H6:ty3 g d u x ⇒
the thesis becomes pr2 c2 t3 t
(H_x0)
by (wf3_getl_conf . . . . . H0 . . H3 . H6)
ex2 C λd2:C.getl i c2 (CHead d2 (Bind Abbr) u) λd2:C.wf3 g d d2
end of H_x0
(H7) consider H_x0
we proceed by induction on H7 to prove pr2 c2 t3 t
case ex_intro2 : x0:C H8:getl i c2 (CHead x0 (Bind Abbr) u) :wf3 g d x0 ⇒
the thesis becomes pr2 c2 t3 t
by (pr2_delta . . . . H8 . . H1 . H2)
pr2 c2 t3 t
pr2 c2 t3 t
we proved pr2 c2 t3 t
∀c2:C.∀H3:(wf3 g c c2).∀u0:T.∀H4:(ty3 g c t3 u0).(pr2 c2 t3 t)
we proved ∀c2:C.(wf3 g c1 c2)→∀u:T.(ty3 g c1 t1 u)→(pr2 c2 t1 t2)
we proved ∀g:G.∀c1:C.∀t1:T.∀t2:T.(pr2 c1 t1 t2)→∀c2:C.(wf3 g c1 c2)→∀u:T.(ty3 g c1 t1 u)→(pr2 c2 t1 t2)