DEFINITION wf3_pc3_conf()
TYPE =
∀g:G.∀c1:C.∀t1:T.∀t2:T.(pc3 c1 t1 t2)→∀c2:C.(wf3 g c1 c2)→∀u1:T.(ty3 g c1 t1 u1)→∀u2:T.(ty3 g c1 t2 u2)→(pc3 c2 t1 t2)
BODY =
assume g: G
assume c1: C
assume t1: T
assume t2: T
suppose H: pc3 c1 t1 t2
assume c2: C
suppose H0: wf3 g c1 c2
assume u1: T
suppose H1: ty3 g c1 t1 u1
assume u2: T
suppose H2: ty3 g c1 t2 u2
(H3) consider H
consider H3
we proved pc3 c1 t1 t2
that is equivalent to ex2 T λt:T.pr3 c1 t1 t λt:T.pr3 c1 t2 t
we proceed by induction on the previous result to prove pc3 c2 t1 t2
case ex_intro2 : x:T H4:pr3 c1 t1 x H5:pr3 c1 t2 x ⇒
the thesis becomes pc3 c2 t1 t2
(h1)
by (wf3_pr3_conf . . . . H4 . H0 . H1)
pr3 c2 t1 x
end of h1
(h2)
by (wf3_pr3_conf . . . . H5 . H0 . H2)
pr3 c2 t2 x
end of h2
by (pc3_pr3_t . . . h1 . h2)
pc3 c2 t1 t2
we proved pc3 c2 t1 t2
we proved ∀g:G.∀c1:C.∀t1:T.∀t2:T.(pc3 c1 t1 t2)→∀c2:C.(wf3 g c1 c2)→∀u1:T.(ty3 g c1 t1 u1)→∀u2:T.(ty3 g c1 t2 u2)→(pc3 c2 t1 t2)