DEFINITION wf3_ty3()
TYPE =
∀g:G.∀c1:C.∀t:T.∀u:T.(ty3 g c1 t u)→(ex2 C λc2:C.wf3 g c1 c2 λc2:C.ty3 g c2 t u)
BODY =
assume g: G
assume c1: C
assume t: T
assume u: T
suppose H: ty3 g c1 t u
(H_x)
by (wf3_total . .)
ex C λc2:C.wf3 g c1 c2
end of H_x
(H0) consider H_x
we proceed by induction on H0 to prove ex2 C λc2:C.wf3 g c1 c2 λc2:C.ty3 g c2 t u
case ex_intro : x:C H1:wf3 g c1 x ⇒
the thesis becomes ex2 C λc2:C.wf3 g c1 c2 λc2:C.ty3 g c2 t u
by (wf3_ty3_conf . . . . H . H1)
we proved ty3 g x t u
by (ex_intro2 . . . . H1 previous)
ex2 C λc2:C.wf3 g c1 c2 λc2:C.ty3 g c2 t u
we proved ex2 C λc2:C.wf3 g c1 c2 λc2:C.ty3 g c2 t u
we proved ∀g:G.∀c1:C.∀t:T.∀u:T.(ty3 g c1 t u)→(ex2 C λc2:C.wf3 g c1 c2 λc2:C.ty3 g c2 t u)