DEFINITION wf3_gen_flat1()
TYPE =
       g:G.c1:C.x:C.v:T.f:F.(wf3 g (CHead c1 (Flat f) v) x)(wf3 g c1 x)
BODY =
        assume gG
        assume c1C
        assume xC
        assume vT
        assume fF
        suppose Hwf3 g (CHead c1 (Flat f) v) x
           assume yC
           suppose H0wf3 g y x
             we proceed by induction on H0 to prove (eq C y (CHead c1 (Flat f) v))(wf3 g c1 x)
                case wf3_sort : m:nat 
                   the thesis becomes H1:(eq C (CSort m) (CHead c1 (Flat f) v)).(wf3 g c1 (CSort m))
                      suppose H1eq C (CSort m) (CHead c1 (Flat f) v)
                         (H2
                            we proceed by induction on H1 to prove <λ:C.Prop> CASE CHead c1 (Flat f) v OF CSort True | CHead   False
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CSort m OF CSort True | CHead   False
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CSort m OF CSort True | CHead   False
<λ:C.Prop> CASE CHead c1 (Flat f) v OF CSort True | CHead   False
                         end of H2
                         consider H2
                         we proved <λ:C.Prop> CASE CHead c1 (Flat f) v OF CSort True | CHead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove wf3 g c1 (CSort m)
                         we proved wf3 g c1 (CSort m)
H1:(eq C (CSort m) (CHead c1 (Flat f) v)).(wf3 g c1 (CSort m))
                case wf3_bind : c0:C c2:C :wf3 g c0 c2 u:T t:T :ty3 g c0 u t b:B 
                   the thesis becomes 
                   H4:eq C (CHead c0 (Bind b) u) (CHead c1 (Flat f) v)
                     .wf3 g c1 (CHead c2 (Bind b) u)
                   () by induction hypothesis we know (eq C c0 (CHead c1 (Flat f) v))(wf3 g c1 c2)
                      suppose H4eq C (CHead c0 (Bind b) u) (CHead c1 (Flat f) v)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:C.Prop>
                                 CASE CHead c1 (Flat f) v OF
                                   CSort False
                                 | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:C.Prop>
                                    CASE CHead c0 (Bind b) u OF
                                      CSort False
                                    | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                                     consider I
                                     we proved True

                                        <λ:C.Prop>
                                          CASE CHead c0 (Bind b) u OF
                                            CSort False
                                          | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False

                               <λ:C.Prop>
                                 CASE CHead c1 (Flat f) v OF
                                   CSort False
                                 | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                         end of H5
                         consider H5
                         we proved 
                            <λ:C.Prop>
                              CASE CHead c1 (Flat f) v OF
                                CSort False
                              | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove wf3 g c1 (CHead c2 (Bind b) u)
                         we proved wf3 g c1 (CHead c2 (Bind b) u)

                         H4:eq C (CHead c0 (Bind b) u) (CHead c1 (Flat f) v)
                           .wf3 g c1 (CHead c2 (Bind b) u)
                case wf3_void : c0:C c2:C :wf3 g c0 c2 u:T :t:T.(ty3 g c0 u t)False b:B 
                   the thesis becomes 
                   H4:eq C (CHead c0 (Bind b) u) (CHead c1 (Flat f) v)
                     .wf3 g c1 (CHead c2 (Bind Void) (TSort O))
                   () by induction hypothesis we know (eq C c0 (CHead c1 (Flat f) v))(wf3 g c1 c2)
                      suppose H4eq C (CHead c0 (Bind b) u) (CHead c1 (Flat f) v)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:C.Prop>
                                 CASE CHead c1 (Flat f) v OF
                                   CSort False
                                 | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:C.Prop>
                                    CASE CHead c0 (Bind b) u OF
                                      CSort False
                                    | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                                     consider I
                                     we proved True

                                        <λ:C.Prop>
                                          CASE CHead c0 (Bind b) u OF
                                            CSort False
                                          | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False

                               <λ:C.Prop>
                                 CASE CHead c1 (Flat f) v OF
                                   CSort False
                                 | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                         end of H5
                         consider H5
                         we proved 
                            <λ:C.Prop>
                              CASE CHead c1 (Flat f) v OF
                                CSort False
                              | CHead  k <λ:K.Prop> CASE k OF Bind True | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove wf3 g c1 (CHead c2 (Bind Void) (TSort O))
                         we proved wf3 g c1 (CHead c2 (Bind Void) (TSort O))

                         H4:eq C (CHead c0 (Bind b) u) (CHead c1 (Flat f) v)
                           .wf3 g c1 (CHead c2 (Bind Void) (TSort O))
                case wf3_flat : c0:C c2:C H1:wf3 g c0 c2 u:T f0:F 
                   the thesis becomes H3:(eq C (CHead c0 (Flat f0) u) (CHead c1 (Flat f) v)).(wf3 g c1 c2)
                   (H2) by induction hypothesis we know (eq C c0 (CHead c1 (Flat f) v))(wf3 g c1 c2)
                      suppose H3eq C (CHead c0 (Flat f0) u) (CHead c1 (Flat f) v)
                         (H4
                            by (f_equal . . . . . H3)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 (Flat f0) u OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 (Flat f) v OF CSort c0 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c0 (Flat f0) u)
                                 λe:C.<λ:C.C> CASE e OF CSort c0 | CHead c  c (CHead c1 (Flat f) v)
                         end of H4
                         (h1
                            (H5
                               by (f_equal . . . . . H3)
                               we proved 
                                  eq
                                    F
                                    <λ:C.F>
                                      CASE CHead c0 (Flat f0) u OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                    <λ:C.F>
                                      CASE CHead c1 (Flat f) v OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1

                                  eq
                                    F
                                    λe:C.<λ:C.F> CASE e OF CSort f0 | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                      CHead c0 (Flat f0) u
                                    λe:C.<λ:C.F> CASE e OF CSort f0 | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                      CHead c1 (Flat f) v
                            end of H5
                            (
                               consider H5
                               we proved 
                                  eq
                                    F
                                    <λ:C.F>
                                      CASE CHead c0 (Flat f0) u OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
                                    <λ:C.F>
                                      CASE CHead c1 (Flat f) v OF
                                        CSort f0
                                      | CHead  k <λ:K.F> CASE k OF Bind f0 | Flat f1f1
eq F f0 f
                            end of 
                            suppose H8eq C c0 c1
                               (H10
                                  we proceed by induction on H8 to prove wf3 g c1 c2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
wf3 g c1 c2
                               end of H10
                               consider H10
                               we proved wf3 g c1 c2
(eq C c0 c1)(wf3 g c1 c2)
                         end of h1
                         (h2
                            consider H4
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c0 (Flat f0) u OF CSort c0 | CHead c  c
                                 <λ:C.C> CASE CHead c1 (Flat f) v OF CSort c0 | CHead c  c
eq C c0 c1
                         end of h2
                         by (h1 h2)
                         we proved wf3 g c1 c2
H3:(eq C (CHead c0 (Flat f0) u) (CHead c1 (Flat f) v)).(wf3 g c1 c2)
             we proved (eq C y (CHead c1 (Flat f) v))(wf3 g c1 x)
          we proved y:C.(wf3 g y x)(eq C y (CHead c1 (Flat f) v))(wf3 g c1 x)
          by (insert_eq . . . . previous H)
          we proved wf3 g c1 x
       we proved g:G.c1:C.x:C.v:T.f:F.(wf3 g (CHead c1 (Flat f) v) x)(wf3 g c1 x)