DEFINITION wcpr0_getl()
TYPE =
       c1:C
         .c2:C
           .wcpr0 c1 c2
             h:nat
                  .e1:C
                    .u1:T
                      .k:K
                        .getl h c1 (CHead e1 k u1)
                          ex3_2 C T λe2:C.λu2:T.getl h c2 (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2
BODY =
        assume c1C
        assume c2C
        suppose Hwcpr0 c1 c2
          we proceed by induction on H to prove 
             h:nat
               .e1:C
                 .u1:T
                   .k:K
                     .getl h c1 (CHead e1 k u1)
                       ex3_2 C T λe2:C.λu2:T.getl h c2 (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2
             case wcpr0_refl : c:C 
                the thesis becomes 
                h:nat
                  .e1:C
                    .u1:T
                      .k:K.H0:(getl h c (CHead e1 k u1)).(ex3_2 C T λe2:C.λu2:T.getl h c (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2)
                    assume hnat
                    assume e1C
                    assume u1T
                    assume kK
                    suppose H0getl h c (CHead e1 k u1)
                      (h1by (wcpr0_refl .) we proved wcpr0 e1 e1
                      (h2by (pr0_refl .) we proved pr0 u1 u1
                      by (ex3_2_intro . . . . . . . H0 h1 h2)
                      we proved ex3_2 C T λe2:C.λu2:T.getl h c (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2

                      h:nat
                        .e1:C
                          .u1:T
                            .k:K.H0:(getl h c (CHead e1 k u1)).(ex3_2 C T λe2:C.λu2:T.getl h c (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2)
             case wcpr0_comp : c3:C c4:C H0:wcpr0 c3 c4 u1:T u2:T H2:pr0 u1 u2 k:K 
                the thesis becomes 
                h:nat
                  .e1:C
                    .u3:T
                      .k0:K
                        .getl h (CHead c3 k u1) (CHead e1 k0 u3)
                          ex3_2 C T λe2:C.λu4:T.getl h (CHead c4 k u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                (H1) by induction hypothesis we know 
                   h:nat
                     .e1:C
                       .u1:T
                         .k:K
                           .getl h c3 (CHead e1 k u1)
                             ex3_2 C T λe2:C.λu2:T.getl h c4 (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2
                   assume hnat
                      we proceed by induction on h to prove 
                         e1:C
                           .u3:T
                             .k0:K
                               .getl h (CHead c3 k u1) (CHead e1 k0 u3)
                                 ex3_2 C T λe2:C.λu4:T.getl h (CHead c4 k u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                         case O : 
                            the thesis becomes 
                            e1:C
                              .u0:T
                                .k0:K
                                  .getl O (CHead c3 k u1) (CHead e1 k0 u0)
                                    ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 k u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                assume e1C
                                assume u0T
                                assume k0K
                                suppose H3getl O (CHead c3 k u1) (CHead e1 k0 u0)
                                  by (getl_gen_O . . H3)
                                  we proved clear (CHead c3 k u1) (CHead e1 k0 u0)
                                     assume bB
                                     suppose H4clear (CHead c3 (Bind b) u1) (CHead e1 k0 u0)
                                        (H5
                                           by (clear_gen_bind . . . . H4)
                                           we proved eq C (CHead e1 k0 u0) (CHead c3 (Bind b) u1)
                                           by (f_equal . . . . . previous)
                                           we proved 
                                              eq
                                                C
                                                <λ:C.C> CASE CHead e1 k0 u0 OF CSort e1 | CHead c  c
                                                <λ:C.C> CASE CHead c3 (Bind b) u1 OF CSort e1 | CHead c  c

                                              eq
                                                C
                                                λe:C.<λ:C.C> CASE e OF CSort e1 | CHead c  c (CHead e1 k0 u0)
                                                λe:C.<λ:C.C> CASE e OF CSort e1 | CHead c  c (CHead c3 (Bind b) u1)
                                        end of H5
                                        (h1
                                           (H6
                                              by (clear_gen_bind . . . . H4)
                                              we proved eq C (CHead e1 k0 u0) (CHead c3 (Bind b) u1)
                                              by (f_equal . . . . . previous)
                                              we proved 
                                                 eq
                                                   K
                                                   <λ:C.K> CASE CHead e1 k0 u0 OF CSort k0 | CHead  k1 k1
                                                   <λ:C.K> CASE CHead c3 (Bind b) u1 OF CSort k0 | CHead  k1 k1

                                                 eq
                                                   K
                                                   λe:C.<λ:C.K> CASE e OF CSort k0 | CHead  k1 k1 (CHead e1 k0 u0)
                                                   λe:C.<λ:C.K> CASE e OF CSort k0 | CHead  k1 k1 (CHead c3 (Bind b) u1)
                                           end of H6
                                           (h1
                                              (H7
                                                 by (clear_gen_bind . . . . H4)
                                                 we proved eq C (CHead e1 k0 u0) (CHead c3 (Bind b) u1)
                                                 by (f_equal . . . . . previous)
                                                 we proved 
                                                    eq
                                                      T
                                                      <λ:C.T> CASE CHead e1 k0 u0 OF CSort u0 | CHead   tt
                                                      <λ:C.T> CASE CHead c3 (Bind b) u1 OF CSort u0 | CHead   tt

                                                    eq
                                                      T
                                                      λe:C.<λ:C.T> CASE e OF CSort u0 | CHead   tt (CHead e1 k0 u0)
                                                      λe:C.<λ:C.T> CASE e OF CSort u0 | CHead   tt (CHead c3 (Bind b) u1)
                                              end of H7
                                               suppose H8eq K k0 (Bind b)
                                               suppose H9eq C e1 c3
                                                 (h1
                                                    by (getl_refl . . .)
                                                    we proved getl O (CHead c4 (Bind b) u2) (CHead c4 (Bind b) u2)
                                                    by (ex3_2_intro . . . . . . . previous H0 H2)
                                                    we proved 
                                                       ex3_2
                                                         C
                                                         T
                                                         λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 (Bind b) u3)
                                                         λe2:C.λ:T.wcpr0 c3 e2
                                                         λ:C.λu3:T.pr0 u1 u3
                                                    by (eq_ind_r . . . previous . H9)

                                                       ex3_2
                                                         C
                                                         T
                                                         λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 (Bind b) u3)
                                                         λe2:C.λ:T.wcpr0 e1 e2
                                                         λ:C.λu3:T.pr0 u1 u3
                                                 end of h1
                                                 (h2
                                                    consider H7
                                                    we proved 
                                                       eq
                                                         T
                                                         <λ:C.T> CASE CHead e1 k0 u0 OF CSort u0 | CHead   tt
                                                         <λ:C.T> CASE CHead c3 (Bind b) u1 OF CSort u0 | CHead   tt
eq T u0 u1
                                                 end of h2
                                                 by (eq_ind_r . . . h1 . h2)
                                                 we proved 
                                                    ex3_2
                                                      C
                                                      T
                                                      λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 (Bind b) u3)
                                                      λe2:C.λ:T.wcpr0 e1 e2
                                                      λ:C.λu3:T.pr0 u0 u3
                                                 by (eq_ind_r . . . previous . H8)
                                                 we proved ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                                 eq K k0 (Bind b)
                                                   (eq C e1 c3
                                                        ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3)
                                           end of h1
                                           (h2
                                              consider H6
                                              we proved 
                                                 eq
                                                   K
                                                   <λ:C.K> CASE CHead e1 k0 u0 OF CSort k0 | CHead  k1 k1
                                                   <λ:C.K> CASE CHead c3 (Bind b) u1 OF CSort k0 | CHead  k1 k1
eq K k0 (Bind b)
                                           end of h2
                                           by (h1 h2)

                                              eq C e1 c3
                                                ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                        end of h1
                                        (h2
                                           consider H5
                                           we proved 
                                              eq
                                                C
                                                <λ:C.C> CASE CHead e1 k0 u0 OF CSort e1 | CHead c  c
                                                <λ:C.C> CASE CHead c3 (Bind b) u1 OF CSort e1 | CHead c  c
eq C e1 c3
                                        end of h2
                                        by (h1 h2)
                                        we proved ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                        H4:clear (CHead c3 (Bind b) u1) (CHead e1 k0 u0)
                                          .ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                     assume fF
                                     suppose H4clear (CHead c3 (Flat f) u1) (CHead e1 k0 u0)
                                        (H5
                                           (h1
                                              by (drop_refl .)
drop O O c3 c3
                                           end of h1
                                           (h2
                                              by (clear_gen_flat . . . . H4)
clear c3 (CHead e1 k0 u0)
                                           end of h2
                                           by (getl_intro . . . . h1 h2)
                                           we proved getl O c3 (CHead e1 k0 u0)
                                           by (H1 . . . . previous)
ex3_2 C T λe2:C.λu2:T.getl O c4 (CHead e2 k0 u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u0 u2
                                        end of H5
                                        we proceed by induction on H5 to prove ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                           case ex3_2_intro : x0:C x1:T H6:getl O c4 (CHead x0 k0 x1) H7:wcpr0 e1 x0 H8:pr0 u0 x1 
                                              the thesis becomes ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                                 by (getl_flat . . . H6 . .)
                                                 we proved getl O (CHead c4 (Flat f) u2) (CHead x0 k0 x1)
                                                 by (ex3_2_intro . . . . . . . previous H7 H8)
ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                        we proved ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                        H4:clear (CHead c3 (Flat f) u1) (CHead e1 k0 u0)
                                          .ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                  by (previous . previous)
                                  we proved ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 k u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                  e1:C
                                    .u0:T
                                      .k0:K
                                        .getl O (CHead c3 k u1) (CHead e1 k0 u0)
                                          ex3_2 C T λe2:C.λu3:T.getl O (CHead c4 k u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                         case 
                            we need to prove 
                            n:nat
                              .e1:C
                                  .u3:T
                                    .k1:K
                                      .getl n (CHead c3 k u1) (CHead e1 k1 u3)
                                        ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 k u2) (CHead e2 k1 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                e1:C
                                     .u3:T
                                       .k1:K
                                         .getl (S n) (CHead c3 k u1) (CHead e1 k1 u3)
                                           ex3_2 C T λe2:C.λu4:T.getl (S n) (CHead c4 k u2) (CHead e2 k1 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                               we proceed by induction on k to prove 
                                  n:nat
                                    .e1:C
                                        .u3:T
                                          .k1:K
                                            .getl n (CHead c3 k u1) (CHead e1 k1 u3)
                                              ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 k u2) (CHead e2 k1 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                      e1:C
                                           .u3:T
                                             .k1:K
                                               .getl (S n) (CHead c3 k u1) (CHead e1 k1 u3)
                                                 ex3_2 C T λe2:C.λu4:T.getl (S n) (CHead c4 k u2) (CHead e2 k1 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                  case Bind : b:B 
                                     the thesis becomes 
                                     n:nat
                                       .e1:C
                                           .u3:T
                                             .k0:K
                                               .getl n (CHead c3 (Bind b) u1) (CHead e1 k0 u3)
                                                 ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 (Bind b) u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                         e1:C
                                              .u0:T
                                                .k0:K
                                                  .H4:getl (S n) (CHead c3 (Bind b) u1) (CHead e1 k0 u0)
                                                    .ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                         assume nnat
                                         suppose 
                                            e1:C
                                              .u3:T
                                                .k0:K
                                                  .getl n (CHead c3 (Bind b) u1) (CHead e1 k0 u3)
                                                    ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 (Bind b) u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                         assume e1C
                                         assume u0T
                                         assume k0K
                                         suppose H4getl (S n) (CHead c3 (Bind b) u1) (CHead e1 k0 u0)
                                           (H5
                                              by (getl_gen_S . . . . . H4)
                                              we proved getl (r (Bind b) n) c3 (CHead e1 k0 u0)
                                              that is equivalent to getl n c3 (CHead e1 k0 u0)
                                              by (H1 . . . . previous)
ex3_2 C T λe2:C.λu2:T.getl n c4 (CHead e2 k0 u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u0 u2
                                           end of H5
                                           we proceed by induction on H5 to prove ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                              case ex3_2_intro : x0:C x1:T H6:getl n c4 (CHead x0 k0 x1) H7:wcpr0 e1 x0 H8:pr0 u0 x1 
                                                 the thesis becomes ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                                    consider H6
                                                    we proved getl n c4 (CHead x0 k0 x1)
                                                    that is equivalent to getl (r (Bind b) n) c4 (CHead x0 k0 x1)
                                                    by (getl_head . . . . previous .)
                                                    we proved getl (S n) (CHead c4 (Bind b) u2) (CHead x0 k0 x1)
                                                    by (ex3_2_intro . . . . . . . previous H7 H8)
ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                           we proved ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                           n:nat
                                             .e1:C
                                                 .u3:T
                                                   .k0:K
                                                     .getl n (CHead c3 (Bind b) u1) (CHead e1 k0 u3)
                                                       ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 (Bind b) u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                               e1:C
                                                    .u0:T
                                                      .k0:K
                                                        .H4:getl (S n) (CHead c3 (Bind b) u1) (CHead e1 k0 u0)
                                                          .ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Bind b) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                  case Flat : f:F 
                                     the thesis becomes 
                                     n:nat
                                       .e1:C
                                           .u3:T
                                             .k0:K
                                               .getl n (CHead c3 (Flat f) u1) (CHead e1 k0 u3)
                                                 ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 (Flat f) u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                         e1:C
                                              .u0:T
                                                .k0:K
                                                  .H4:getl (S n) (CHead c3 (Flat f) u1) (CHead e1 k0 u0)
                                                    .ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                         assume nnat
                                         suppose 
                                            e1:C
                                              .u3:T
                                                .k0:K
                                                  .getl n (CHead c3 (Flat f) u1) (CHead e1 k0 u3)
                                                    ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 (Flat f) u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                         assume e1C
                                         assume u0T
                                         assume k0K
                                         suppose H4getl (S n) (CHead c3 (Flat f) u1) (CHead e1 k0 u0)
                                           (H5
                                              by (getl_gen_S . . . . . H4)
                                              we proved getl (r (Flat f) n) c3 (CHead e1 k0 u0)
                                              that is equivalent to getl (S n) c3 (CHead e1 k0 u0)
                                              by (H1 . . . . previous)
ex3_2 C T λe2:C.λu2:T.getl (S n) c4 (CHead e2 k0 u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u0 u2
                                           end of H5
                                           we proceed by induction on H5 to prove ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                              case ex3_2_intro : x0:C x1:T H6:getl (S n) c4 (CHead x0 k0 x1) H7:wcpr0 e1 x0 H8:pr0 u0 x1 
                                                 the thesis becomes ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                                    consider H6
                                                    we proved getl (S n) c4 (CHead x0 k0 x1)
                                                    that is equivalent to getl (r (Flat f) n) c4 (CHead x0 k0 x1)
                                                    by (getl_head . . . . previous .)
                                                    we proved getl (S n) (CHead c4 (Flat f) u2) (CHead x0 k0 x1)
                                                    by (ex3_2_intro . . . . . . . previous H7 H8)
ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3
                                           we proved ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                           n:nat
                                             .e1:C
                                                 .u3:T
                                                   .k0:K
                                                     .getl n (CHead c3 (Flat f) u1) (CHead e1 k0 u3)
                                                       ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 (Flat f) u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                               e1:C
                                                    .u0:T
                                                      .k0:K
                                                        .H4:getl (S n) (CHead c3 (Flat f) u1) (CHead e1 k0 u0)
                                                          .ex3_2 C T λe2:C.λu3:T.getl (S n) (CHead c4 (Flat f) u2) (CHead e2 k0 u3) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu3:T.pr0 u0 u3

                                  n:nat
                                    .e1:C
                                        .u3:T
                                          .k1:K
                                            .getl n (CHead c3 k u1) (CHead e1 k1 u3)
                                              ex3_2 C T λe2:C.λu4:T.getl n (CHead c4 k u2) (CHead e2 k1 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                                      e1:C
                                           .u3:T
                                             .k1:K
                                               .getl (S n) (CHead c3 k u1) (CHead e1 k1 u3)
                                                 ex3_2 C T λe2:C.λu4:T.getl (S n) (CHead c4 k u2) (CHead e2 k1 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
                      we proved 
                         e1:C
                           .u3:T
                             .k0:K
                               .getl h (CHead c3 k u1) (CHead e1 k0 u3)
                                 ex3_2 C T λe2:C.λu4:T.getl h (CHead c4 k u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4

                      h:nat
                        .e1:C
                          .u3:T
                            .k0:K
                              .getl h (CHead c3 k u1) (CHead e1 k0 u3)
                                ex3_2 C T λe2:C.λu4:T.getl h (CHead c4 k u2) (CHead e2 k0 u4) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu4:T.pr0 u3 u4
          we proved 
             h:nat
               .e1:C
                 .u1:T
                   .k:K
                     .getl h c1 (CHead e1 k u1)
                       ex3_2 C T λe2:C.λu2:T.getl h c2 (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2
       we proved 
          c1:C
            .c2:C
              .wcpr0 c1 c2
                h:nat
                     .e1:C
                       .u1:T
                         .k:K
                           .getl h c1 (CHead e1 k u1)
                             ex3_2 C T λe2:C.λu2:T.getl h c2 (CHead e2 k u2) λe2:C.λ:T.wcpr0 e1 e2 λ:C.λu2:T.pr0 u1 u2