DEFINITION wcpr0_ind()
TYPE =
       P:CCProp
         .c:C.(P c c)
           (c:C
                  .c1:C
                    .wcpr0 c c1
                      (P c c1)t:T.t1:T.(pr0 t t1)k:K.(P (CHead c k t) (CHead c1 k t1))
                c:C.c1:C.(wcpr0 c c1)(P c c1))
BODY =
        assume PCCProp
        suppose Hc:C.(P c c)
        suppose H1
           c:C
             .c1:C
               .wcpr0 c c1
                 (P c c1)t:T.t1:T.(pr0 t t1)k:K.(P (CHead c k t) (CHead c1 k t1))
          (aux) by well-founded reasoning we prove c:C.c1:C.(wcpr0 c c1)(P c c1)
           assume cC
           assume c1C
           suppose H2wcpr0 c c1
             by cases on H2 we prove P c c1
                case wcpr0_refl c2:C 
                   the thesis becomes P c2 c2
                   by (H .)
P c2 c2
                case wcpr0_comp c2:C c3:C H3:wcpr0 c2 c3 t:T t1:T H4:pr0 t t1 k:K 
                   the thesis becomes P (CHead c2 k t) (CHead c3 k t1)
                   by (aux . . H3)
                   we proved P c2 c3
                   by (H1 . . H3 previous . . H4 .)
P (CHead c2 k t) (CHead c3 k t1)
             we proved P c c1
c:C.c1:C.(wcpr0 c c1)(P c c1)
          done
          consider aux
          we proved c:C.c1:C.(wcpr0 c c1)(P c c1)
       we proved 
          P:CCProp
            .c:C.(P c c)
              (c:C
                     .c1:C
                       .wcpr0 c c1
                         (P c c1)t:T.t1:T.(pr0 t t1)k:K.(P (CHead c k t) (CHead c1 k t1))
                   c:C.c1:C.(wcpr0 c c1)(P c c1))