DEFINITION ty3_gen_abst_abst()
TYPE =
∀g:G
.∀c:C
.∀u:T
.∀t1:T
.∀t2:T
.ty3 g c (THead (Bind Abst) u t1) (THead (Bind Abst) u t2)
→ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
BODY =
assume g: G
assume c: C
assume u: T
assume t1: T
assume t2: T
suppose H: ty3 g c (THead (Bind Abst) u t1) (THead (Bind Abst) u t2)
by (ty3_correct . . . . H)
we proved ex T λt:T.ty3 g c (THead (Bind Abst) u t2) t
we proceed by induction on the previous result to prove ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
case ex_intro : x:T H0:ty3 g c (THead (Bind Abst) u t2) x ⇒
the thesis becomes ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
by (ty3_gen_bind . . . . . . H0)
we proved
ex3_2
T
T
λt2:T.λ:T.pc3 c (THead (Bind Abst) u t2) x
λ:T.λt:T.ty3 g c u t
λt2:T.λ:T.ty3 g (CHead c (Bind Abst) u) t2 t2
we proceed by induction on the previous result to prove ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
case ex3_2_intro : x0:T x1:T :pc3 c (THead (Bind Abst) u x0) x :ty3 g c u x1 H3:ty3 g (CHead c (Bind Abst) u) t2 x0 ⇒
the thesis becomes ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
by (ty3_gen_bind . . . . . . H)
we proved
ex3_2
T
T
λt2:T.λ:T.pc3 c (THead (Bind Abst) u t2) (THead (Bind Abst) u t2)
λ:T.λt:T.ty3 g c u t
λt2:T.λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
we proceed by induction on the previous result to prove ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
case ex3_2_intro : x2:T x3:T H4:pc3 c (THead (Bind Abst) u x2) (THead (Bind Abst) u t2) H5:ty3 g c u x3 H6:ty3 g (CHead c (Bind Abst) u) t1 x2 ⇒
the thesis becomes ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
(H_y)
by (pc3_gen_abst_shift . . . . H4)
pc3 (CHead c (Bind Abst) u) x2 t2
end of H_y
by (ty3_conv . . . . H3 . . H6 H_y)
we proved ty3 g (CHead c (Bind Abst) u) t1 t2
by (ex_intro2 . . . . H5 previous)
ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
we proved ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2
we proved
∀g:G
.∀c:C
.∀u:T
.∀t1:T
.∀t2:T
.ty3 g c (THead (Bind Abst) u t1) (THead (Bind Abst) u t2)
→ex2 T λw:T.ty3 g c u w λ:T.ty3 g (CHead c (Bind Abst) u) t1 t2