DEFINITION ty3_tred()
TYPE =
∀g:G.∀c:C.∀u:T.∀t1:T.(ty3 g c u t1)→∀t2:T.(pr3 c t1 t2)→(ty3 g c u t2)
BODY =
assume g: G
assume c: C
assume u: T
assume t1: T
suppose H: ty3 g c u t1
assume t2: T
suppose H0: pr3 c t1 t2
by (ty3_correct . . . . H)
we proved ex T λt:T.ty3 g c t1 t
we proceed by induction on the previous result to prove ty3 g c u t2
case ex_intro : x:T H1:ty3 g c t1 x ⇒
the thesis becomes ty3 g c u t2
(H_y) by (ty3_sred_pr3 . . . H0 . . H1) we proved ty3 g c t2 x
by (pc3_pr3_r . . . H0)
we proved pc3 c t1 t2
by (ty3_conv . . . . H_y . . H previous)
ty3 g c u t2
we proved ty3 g c u t2
we proved ∀g:G.∀c:C.∀u:T.∀t1:T.(ty3 g c u t1)→∀t2:T.(pr3 c t1 t2)→(ty3 g c u t2)