DEFINITION ty3_sconv_pc3()
TYPE =
∀g:G.∀c:C.∀u1:T.∀t1:T.(ty3 g c u1 t1)→∀u2:T.∀t2:T.(ty3 g c u2 t2)→(pc3 c u1 u2)→(pc3 c t1 t2)
BODY =
assume g: G
assume c: C
assume u1: T
assume t1: T
suppose H: ty3 g c u1 t1
assume u2: T
assume t2: T
suppose H0: ty3 g c u2 t2
suppose H1: pc3 c u1 u2
(H2) consider H1
consider H2
we proved pc3 c u1 u2
that is equivalent to ex2 T λt:T.pr3 c u1 t λt:T.pr3 c u2 t
we proceed by induction on the previous result to prove pc3 c t1 t2
case ex_intro2 : x:T H3:pr3 c u1 x H4:pr3 c u2 x ⇒
the thesis becomes pc3 c t1 t2
(H_y) by (ty3_sred_pr3 . . . H4 . . H0) we proved ty3 g c x t2
(H_y0) by (ty3_sred_pr3 . . . H3 . . H) we proved ty3 g c x t1
by (ty3_unique . . . . H_y0 . H_y)
pc3 c t1 t2
we proved pc3 c t1 t2
we proved ∀g:G.∀c:C.∀u1:T.∀t1:T.(ty3 g c u1 t1)→∀u2:T.∀t2:T.(ty3 g c u2 t2)→(pc3 c u1 u2)→(pc3 c t1 t2)