DEFINITION ty3_sred_pr3()
TYPE =
       c:C.t1:T.t2:T.(pr3 c t1 t2)g:G.t:T.(ty3 g c t1 t)(ty3 g c t2 t)
BODY =
        assume cC
        assume t1T
        assume t2T
        suppose Hpr3 c t1 t2
          we proceed by induction on H to prove g:G.t3:T.(ty3 g c t1 t3)(ty3 g c t2 t3)
             case pr3_refl : t:T 
                    assume gG
                    assume t0T
                    suppose H0ty3 g c t t0
                      consider H0
             case pr3_sing : t3:T t4:T H0:pr2 c t4 t3 t5:T :pr3 c t3 t5 
                the thesis becomes g:G.t:T.H3:(ty3 g c t4 t).(ty3 g c t5 t)
                (H2) by induction hypothesis we know g:G.t:T.(ty3 g c t3 t)(ty3 g c t5 t)
                    assume gG
                    assume tT
                    suppose H3ty3 g c t4 t
                      by (ty3_sred_pr2 . . . H0 . . H3)
                      we proved ty3 g c t3 t
                      by (H2 . . previous)
                      we proved ty3 g c t5 t
g:G.t:T.H3:(ty3 g c t4 t).(ty3 g c t5 t)
          we proved g:G.t3:T.(ty3 g c t1 t3)(ty3 g c t2 t3)
       we proved c:C.t1:T.t2:T.(pr3 c t1 t2)g:G.t3:T.(ty3 g c t1 t3)(ty3 g c t2 t3)