DEFINITION ty3_sred_pr1()
TYPE =
       t1:T.t2:T.(pr1 t1 t2)g:G.c:C.t:T.(ty3 g c t1 t)(ty3 g c t2 t)
BODY =
        assume t1T
        assume t2T
        suppose Hpr1 t1 t2
          we proceed by induction on H to prove g:G.c:C.t3:T.(ty3 g c t1 t3)(ty3 g c t2 t3)
             case pr1_refl : t:T 
                    assume gG
                    assume cC
                    assume t0T
                    suppose H0ty3 g c t t0
                      consider H0
             case pr1_sing : t3:T t4:T H0:pr0 t4 t3 t5:T :pr1 t3 t5 
                the thesis becomes g:G.c:C.t:T.H3:(ty3 g c t4 t).(ty3 g c t5 t)
                (H2) by induction hypothesis we know g:G.c:C.t:T.(ty3 g c t3 t)(ty3 g c t5 t)
                    assume gG
                    assume cC
                    assume tT
                    suppose H3ty3 g c t4 t
                      by (ty3_sred_pr0 . . H0 . . . H3)
                      we proved ty3 g c t3 t
                      by (H2 . . . previous)
                      we proved ty3 g c t5 t
g:G.c:C.t:T.H3:(ty3 g c t4 t).(ty3 g c t5 t)
          we proved g:G.c:C.t3:T.(ty3 g c t1 t3)(ty3 g c t2 t3)
       we proved t1:T.t2:T.(pr1 t1 t2)g:G.c:C.t3:T.(ty3 g c t1 t3)(ty3 g c t2 t3)