DEFINITION ty3_nf2_inv_all()
TYPE =
∀g:G
.∀c:C
.∀t:T
.∀u:T
.ty3 g c t u
→(nf2 c t
→(or3
ex3_2
T
T
λw:T.λu0:T.eq T t (THead (Bind Abst) w u0)
λw:T.λ:T.nf2 c w
λw:T.λu0:T.nf2 (CHead c (Bind Abst) w) u0
ex nat λn:nat.eq T t (TSort n)
ex3_2
TList
nat
λws:TList.λi:nat.eq T t (THeads (Flat Appl) ws (TLRef i))
λws:TList.λ:nat.nfs2 c ws
λ:TList.λi:nat.nf2 c (TLRef i)))
BODY =
assume g: G
assume c: C
assume t: T
assume u: T
suppose H: ty3 g c t u
suppose H0: nf2 c t
(H_x)
by (ty3_arity . . . . H)
ex2 A λa1:A.arity g c t a1 λa1:A.arity g c u (asucc g a1)
end of H_x
(H1) consider H_x
we proceed by induction on H1 to prove
or3
ex3_2
T
T
λw:T.λu0:T.eq T t (THead (Bind Abst) w u0)
λw:T.λ:T.nf2 c w
λw:T.λu0:T.nf2 (CHead c (Bind Abst) w) u0
ex nat λn:nat.eq T t (TSort n)
ex3_2
TList
nat
λws:TList.λi:nat.eq T t (THeads (Flat Appl) ws (TLRef i))
λws:TList.λ:nat.nfs2 c ws
λ:TList.λi:nat.nf2 c (TLRef i)
case ex_intro2 : x:A H2:arity g c t x :arity g c u (asucc g x) ⇒
the thesis becomes
or3
ex3_2
T
T
λw:T.λu:T.eq T t (THead (Bind Abst) w u)
λw:T.λ:T.nf2 c w
λw:T.λu:T.nf2 (CHead c (Bind Abst) w) u
ex nat λn:nat.eq T t (TSort n)
ex3_2
TList
nat
λws:TList.λi:nat.eq T t (THeads (Flat Appl) ws (TLRef i))
λws:TList.λ:nat.nfs2 c ws
λ:TList.λi:nat.nf2 c (TLRef i)
by (arity_nf2_inv_all . . . . H2 H0)
or3
ex3_2
T
T
λw:T.λu:T.eq T t (THead (Bind Abst) w u)
λw:T.λ:T.nf2 c w
λw:T.λu:T.nf2 (CHead c (Bind Abst) w) u
ex nat λn:nat.eq T t (TSort n)
ex3_2
TList
nat
λws:TList.λi:nat.eq T t (THeads (Flat Appl) ws (TLRef i))
λws:TList.λ:nat.nfs2 c ws
λ:TList.λi:nat.nf2 c (TLRef i)
we proved
or3
ex3_2
T
T
λw:T.λu0:T.eq T t (THead (Bind Abst) w u0)
λw:T.λ:T.nf2 c w
λw:T.λu0:T.nf2 (CHead c (Bind Abst) w) u0
ex nat λn:nat.eq T t (TSort n)
ex3_2
TList
nat
λws:TList.λi:nat.eq T t (THeads (Flat Appl) ws (TLRef i))
λws:TList.λ:nat.nfs2 c ws
λ:TList.λi:nat.nf2 c (TLRef i)
we proved
∀g:G
.∀c:C
.∀t:T
.∀u:T
.ty3 g c t u
→(nf2 c t
→(or3
ex3_2
T
T
λw:T.λu0:T.eq T t (THead (Bind Abst) w u0)
λw:T.λ:T.nf2 c w
λw:T.λu0:T.nf2 (CHead c (Bind Abst) w) u0
ex nat λn:nat.eq T t (TSort n)
ex3_2
TList
nat
λws:TList.λi:nat.eq T t (THeads (Flat Appl) ws (TLRef i))
λws:TList.λ:nat.nfs2 c ws
λ:TList.λi:nat.nf2 c (TLRef i)))