DEFINITION ty3_inv_lref_nf2()
TYPE =
∀g:G
.∀c:C
.∀u:T
.∀i:nat
.ty3 g c (TLRef i) u
→(nf2 c (TLRef i))→(nf2 c u)→(ex T λu0:T.eq T u (lift (S i) O u0))
BODY =
assume g: G
assume c: C
assume u: T
assume i: nat
suppose H: ty3 g c (TLRef i) u
suppose H0: nf2 c (TLRef i)
suppose H1: nf2 c u
by (pc3_refl . .)
we proved pc3 c u u
by (ty3_inv_lref_nf2_pc3 . . . . H H0 . H1 previous)
we proved ex T λu:T.eq T u (lift (S i) O u)
we proved
∀g:G
.∀c:C
.∀u:T
.∀i:nat
.ty3 g c (TLRef i) u
→(nf2 c (TLRef i)
→(nf2 c u)→(ex T λu:T.eq T u (lift (S i) O u)))