DEFINITION ty3_gen_sort()
TYPE =
       g:G.c:C.x:T.n:nat.(ty3 g c (TSort n) x)(pc3 c (TSort (next g n)) x)
BODY =
        assume gG
        assume cC
        assume xT
        assume nnat
        suppose Hty3 g c (TSort n) x
           assume yT
           suppose H0ty3 g c y x
             we proceed by induction on H0 to prove (eq T y (TSort n))(pc3 c (TSort (next g n)) x)
                case ty3_conv : c0:C t2:T t:T :ty3 g c0 t2 t u:T t1:T H3:ty3 g c0 u t1 H5:pc3 c0 t1 t2 
                   the thesis becomes H6:(eq T u (TSort n)).(pc3 c0 (TSort (next g n)) t2)
                   () by induction hypothesis we know (eq T t2 (TSort n))(pc3 c0 (TSort (next g n)) t)
                   (H4) by induction hypothesis we know (eq T u (TSort n))(pc3 c0 (TSort (next g n)) t1)
                      suppose H6eq T u (TSort n)
                         (H7
                            by (f_equal . . . . . H6)
                            we proved eq T u (TSort n)
eq T (λe:T.e u) (λe:T.e (TSort n))
                         end of H7
                         (H8
                            we proceed by induction on H7 to prove (eq T (TSort n) (TSort n))(pc3 c0 (TSort (next g n)) t1)
                               case refl_equal : 
                                  the thesis becomes the hypothesis H4
(eq T (TSort n) (TSort n))(pc3 c0 (TSort (next g n)) t1)
                         end of H8
                         by (refl_equal . .)
                         we proved eq T (TSort n) (TSort n)
                         by (H8 previous)
                         we proved pc3 c0 (TSort (next g n)) t1
                         by (pc3_t . . . previous . H5)
                         we proved pc3 c0 (TSort (next g n)) t2
H6:(eq T u (TSort n)).(pc3 c0 (TSort (next g n)) t2)
                case ty3_sort : c0:C m:nat 
                   the thesis becomes 
                   H1:eq T (TSort m) (TSort n)
                     .pc3 c0 (TSort (next g n)) (TSort (next g m))
                      suppose H1eq T (TSort m) (TSort n)
                         (H2
                            by (f_equal . . . . . H1)
                            we proved 
                               eq
                                 nat
                                 <λ:T.nat> CASE TSort m OF TSort n0n0 | TLRef m | THead   m
                                 <λ:T.nat> CASE TSort n OF TSort n0n0 | TLRef m | THead   m

                               eq
                                 nat
                                 λe:T.<λ:T.nat> CASE e OF TSort n0n0 | TLRef m | THead   m (TSort m)
                                 λe:T.<λ:T.nat> CASE e OF TSort n0n0 | TLRef m | THead   m (TSort n)
                         end of H2
                         (h1
                            by (pc3_refl . .)
pc3 c0 (TSort (next g n)) (TSort (next g n))
                         end of h1
                         (h2
                            consider H2
                            we proved 
                               eq
                                 nat
                                 <λ:T.nat> CASE TSort m OF TSort n0n0 | TLRef m | THead   m
                                 <λ:T.nat> CASE TSort n OF TSort n0n0 | TLRef m | THead   m
eq nat m n
                         end of h2
                         by (eq_ind_r . . . h1 . h2)
                         we proved pc3 c0 (TSort (next g n)) (TSort (next g m))

                         H1:eq T (TSort m) (TSort n)
                           .pc3 c0 (TSort (next g n)) (TSort (next g m))
                case ty3_abbr : n0:nat c0:C d:C u:T :getl n0 c0 (CHead d (Bind Abbr) u) t:T :ty3 g d u t 
                   the thesis becomes 
                   H4:eq T (TLRef n0) (TSort n)
                     .pc3 c0 (TSort (next g n)) (lift (S n0) O t)
                   () by induction hypothesis we know (eq T u (TSort n))(pc3 d (TSort (next g n)) t)
                      suppose H4eq T (TLRef n0) (TSort n)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef n0 OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef n0 OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove pc3 c0 (TSort (next g n)) (lift (S n0) O t)
                         we proved pc3 c0 (TSort (next g n)) (lift (S n0) O t)

                         H4:eq T (TLRef n0) (TSort n)
                           .pc3 c0 (TSort (next g n)) (lift (S n0) O t)
                case ty3_abst : n0:nat c0:C d:C u:T :getl n0 c0 (CHead d (Bind Abst) u) t:T :ty3 g d u t 
                   the thesis becomes 
                   H4:eq T (TLRef n0) (TSort n)
                     .pc3 c0 (TSort (next g n)) (lift (S n0) O u)
                   () by induction hypothesis we know (eq T u (TSort n))(pc3 d (TSort (next g n)) t)
                      suppose H4eq T (TLRef n0) (TSort n)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef n0 OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef n0 OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove pc3 c0 (TSort (next g n)) (lift (S n0) O u)
                         we proved pc3 c0 (TSort (next g n)) (lift (S n0) O u)

                         H4:eq T (TLRef n0) (TSort n)
                           .pc3 c0 (TSort (next g n)) (lift (S n0) O u)
                case ty3_bind : c0:C u:T t:T :ty3 g c0 u t b:B t1:T t2:T :ty3 g (CHead c0 (Bind b) u) t1 t2 
                   the thesis becomes 
                   H5:eq T (THead (Bind b) u t1) (TSort n)
                     .pc3 c0 (TSort (next g n)) (THead (Bind b) u t2)
                   () by induction hypothesis we know (eq T u (TSort n))(pc3 c0 (TSort (next g n)) t)
                   () by induction hypothesis we know 
                      eq T t1 (TSort n)
                        pc3 (CHead c0 (Bind b) u) (TSort (next g n)) t2
                      suppose H5eq T (THead (Bind b) u t1) (TSort n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind b) u t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove pc3 c0 (TSort (next g n)) (THead (Bind b) u t2)
                         we proved pc3 c0 (TSort (next g n)) (THead (Bind b) u t2)

                         H5:eq T (THead (Bind b) u t1) (TSort n)
                           .pc3 c0 (TSort (next g n)) (THead (Bind b) u t2)
                case ty3_appl : c0:C w:T u:T :ty3 g c0 w u v:T t:T :ty3 g c0 v (THead (Bind Abst) u t) 
                   the thesis becomes 
                   H5:eq T (THead (Flat Appl) w v) (TSort n)
                     .pc3
                       c0
                       TSort (next g n)
                       THead (Flat Appl) w (THead (Bind Abst) u t)
                   () by induction hypothesis we know (eq T w (TSort n))(pc3 c0 (TSort (next g n)) u)
                   () by induction hypothesis we know 
                      eq T v (TSort n)
                        pc3 c0 (TSort (next g n)) (THead (Bind Abst) u t)
                      suppose H5eq T (THead (Flat Appl) w v) (TSort n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Appl) w v OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            pc3
                              c0
                              TSort (next g n)
                              THead (Flat Appl) w (THead (Bind Abst) u t)
                         we proved 
                            pc3
                              c0
                              TSort (next g n)
                              THead (Flat Appl) w (THead (Bind Abst) u t)

                         H5:eq T (THead (Flat Appl) w v) (TSort n)
                           .pc3
                             c0
                             TSort (next g n)
                             THead (Flat Appl) w (THead (Bind Abst) u t)
                case ty3_cast : c0:C t1:T t2:T :ty3 g c0 t1 t2 t0:T :ty3 g c0 t2 t0 
                   the thesis becomes 
                   H5:eq T (THead (Flat Cast) t2 t1) (TSort n)
                     .pc3 c0 (TSort (next g n)) (THead (Flat Cast) t0 t2)
                   () by induction hypothesis we know (eq T t1 (TSort n))(pc3 c0 (TSort (next g n)) t2)
                   () by induction hypothesis we know (eq T t2 (TSort n))(pc3 c0 (TSort (next g n)) t0)
                      suppose H5eq T (THead (Flat Cast) t2 t1) (TSort n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Cast) t2 t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t2 t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove pc3 c0 (TSort (next g n)) (THead (Flat Cast) t0 t2)
                         we proved pc3 c0 (TSort (next g n)) (THead (Flat Cast) t0 t2)

                         H5:eq T (THead (Flat Cast) t2 t1) (TSort n)
                           .pc3 c0 (TSort (next g n)) (THead (Flat Cast) t0 t2)
             we proved (eq T y (TSort n))(pc3 c (TSort (next g n)) x)
          we proved 
             y:T
               .(ty3 g c y x)(eq T y (TSort n))(pc3 c (TSort (next g n)) x)
          by (insert_eq . . . . previous H)
          we proved pc3 c (TSort (next g n)) x
       we proved g:G.c:C.x:T.n:nat.(ty3 g c (TSort n) x)(pc3 c (TSort (next g n)) x)