DEFINITION ty3_subst0()
TYPE =
∀g:G
.∀c:C
.∀t1:T
.∀t:T
.ty3 g c t1 t
→∀e:C
.∀u:T
.∀i:nat
.(getl i c (CHead e (Bind Abbr) u))→∀t2:T.(subst0 i u t1 t2)→(ty3 g c t2 t)
BODY =
assume g: G
assume c: C
assume t1: T
assume t: T
suppose H: ty3 g c t1 t
assume e: C
assume u: T
assume i: nat
suppose H0: getl i c (CHead e (Bind Abbr) u)
assume t2: T
suppose H1: subst0 i u t1 t2
by (fsubst0_snd . . . . . H1)
we proved fsubst0 i u c t1 c t2
by (ty3_fsubst0 . . . . H . . . . previous . H0)
we proved ty3 g c t2 t
we proved
∀g:G
.∀c:C
.∀t1:T
.∀t:T
.ty3 g c t1 t
→∀e:C
.∀u:T
.∀i:nat
.(getl i c (CHead e (Bind Abbr) u))→∀t2:T.(subst0 i u t1 t2)→(ty3 g c t2 t)