DEFINITION ty3_csubst0()
TYPE =
∀g:G
.∀c1:C
.∀t1:T
.∀t2:T
.ty3 g c1 t1 t2
→∀e:C
.∀u:T.∀i:nat.(getl i c1 (CHead e (Bind Abbr) u))→∀c2:C.(csubst0 i u c1 c2)→(ty3 g c2 t1 t2)
BODY =
assume g: G
assume c1: C
assume t1: T
assume t2: T
suppose H: ty3 g c1 t1 t2
assume e: C
assume u: T
assume i: nat
suppose H0: getl i c1 (CHead e (Bind Abbr) u)
assume c2: C
suppose H1: csubst0 i u c1 c2
by (fsubst0_fst . . . . . H1)
we proved fsubst0 i u c1 t1 c2 t1
by (ty3_fsubst0 . . . . H . . . . previous . H0)
we proved ty3 g c2 t1 t2
we proved
∀g:G
.∀c1:C
.∀t1:T
.∀t2:T
.ty3 g c1 t1 t2
→∀e:C
.∀u:T.∀i:nat.(getl i c1 (CHead e (Bind Abbr) u))→∀c2:C.(csubst0 i u c1 c2)→(ty3 g c2 t1 t2)