DEFINITION ty3_repellent()
TYPE =
∀g:G
.∀c:C
.∀w:T
.∀t:T
.∀u1:T
.ty3 g c (THead (Bind Abst) w t) u1
→∀u2:T
.ty3 g (CHead c (Bind Abst) w) t (lift (S O) O u2)
→(pc3 c u1 u2)→∀P:Prop.P
BODY =
assume g: G
assume c: C
assume w: T
assume t: T
assume u1: T
suppose H: ty3 g c (THead (Bind Abst) w t) u1
assume u2: T
suppose H0: ty3 g (CHead c (Bind Abst) w) t (lift (S O) O u2)
suppose H1: pc3 c u1 u2
assume P: Prop
by (ty3_correct . . . . H0)
we proved ex T λt:T.ty3 g (CHead c (Bind Abst) w) (lift (S O) O u2) t
we proceed by induction on the previous result to prove P
case ex_intro : x:T H2:ty3 g (CHead c (Bind Abst) w) (lift (S O) O u2) x ⇒
the thesis becomes P
(H3)
by (drop_refl .)
we proved drop O O c c
that is equivalent to drop (r (Bind Abst) O) O c c
by (drop_drop . . . . previous .)
we proved drop (S O) O (CHead c (Bind Abst) w) c
by (ty3_gen_lift . . . . . . H2 . previous)
ex2 T λt2:T.pc3 (CHead c (Bind Abst) w) (lift (S O) O t2) x λt2:T.ty3 g c u2 t2
end of H3
we proceed by induction on H3 to prove P
case ex_intro2 : x0:T :pc3 (CHead c (Bind Abst) w) (lift (S O) O x0) x H5:ty3 g c u2 x0 ⇒
the thesis becomes P
(H_y)
by (ty3_conv . . . . H5 . . H H1)
ty3 g c (THead (Bind Abst) w t) u2
end of H_y
(H_x)
by (ty3_arity . . . . H0)
ex2
A
λa1:A.arity g (CHead c (Bind Abst) w) t a1
λa1:A.arity g (CHead c (Bind Abst) w) (lift (S O) O u2) (asucc g a1)
end of H_x
(H6) consider H_x
we proceed by induction on H6 to prove P
case ex_intro2 : x1:A H7:arity g (CHead c (Bind Abst) w) t x1 H8:arity g (CHead c (Bind Abst) w) (lift (S O) O u2) (asucc g x1) ⇒
the thesis becomes P
(H_x0)
by (ty3_arity . . . . H_y)
ex2
A
λa1:A.arity g c (THead (Bind Abst) w t) a1
λa1:A.arity g c u2 (asucc g a1)
end of H_x0
(H9) consider H_x0
we proceed by induction on H9 to prove P
case ex_intro2 : x2:A H10:arity g c (THead (Bind Abst) w t) x2 H11:arity g c u2 (asucc g x2) ⇒
the thesis becomes P
by (drop_refl .)
we proved drop O O c c
that is equivalent to drop (r (Bind Abst) O) O c c
by (drop_drop . . . . previous .)
we proved drop (S O) O (CHead c (Bind Abst) w) c
by (arity_gen_lift . . . . . . H8 . previous)
we proved arity g c u2 (asucc g x1)
by (arity_mono . . . . previous . H11)
we proved leq g (asucc g x1) (asucc g x2)
by (asucc_inj . . . previous)
we proved leq g x1 x2
by (arity_repellent . . . . . H7 . H10 previous .)
P
P
P
P
we proved P
we proved
∀g:G
.∀c:C
.∀w:T
.∀t:T
.∀u1:T
.ty3 g c (THead (Bind Abst) w t) u1
→∀u2:T
.ty3 g (CHead c (Bind Abst) w) t (lift (S O) O u2)
→(pc3 c u1 u2)→∀P:Prop.P