DEFINITION ty3_acyclic()
TYPE =
∀g:G.∀c:C.∀t:T.∀u:T.(ty3 g c t u)→(pc3 c u t)→∀P:Prop.P
BODY =
assume g: G
assume c: C
assume t: T
assume u: T
suppose H: ty3 g c t u
suppose H0: pc3 c u t
assume P: Prop
(H_y)
by (ty3_conv . . . . H . . H H0)
ty3 g c t t
end of H_y
(H_x)
by (ty3_arity . . . . H_y)
ex2 A λa1:A.arity g c t a1 λa1:A.arity g c t (asucc g a1)
end of H_x
(H1) consider H_x
we proceed by induction on H1 to prove P
case ex_intro2 : x:A H2:arity g c t x H3:arity g c t (asucc g x) ⇒
the thesis becomes P
by (arity_mono . . . . H3 . H2)
we proved leq g (asucc g x) x
by (leq_asucc_false . . previous .)
P
we proved P
we proved ∀g:G.∀c:C.∀t:T.∀u:T.(ty3 g c t u)→(pc3 c u t)→∀P:Prop.P