DEFINITION tlt_wf_ind()
TYPE =
       P:TProp.(t:T.(v:T.(tlt v t)(P v))(P t))t:T.(P t)
BODY =
       (Q
           assume PTProp
           assume nnat
              assume tT
              suppose eq nat (weight t) n
                by (. .)
                we proved 
             suppose eq nat (weight t) n
                by (. .)
                we proved 
             by (. .)
             we proved 

       end of Q
        assume PTProp
        suppose Ht:T.(v:T.(lt (weight v) (weight t))(P v))(P t)
        assume tT
          assume nnat
              assume n0nat
              suppose H0m:nat.(lt m n0)(Q λt0:T.P t0 m)
                we must prove λt0:T.P t0 n0
                or equivalently t0:T.(eq nat (weight t0) n0)(P t0)
                 assume t0T
                 suppose H1eq nat (weight t0) n0
                   (H2
                      consider H0
                      we proved m:nat.(lt m n0)(Q λt0:T.P t0 m)
                      that is equivalent to m:nat.(lt m n0)t1:T.(eq nat (weight t1) m)(P t1)
                      by (eq_ind_r . . . previous . H1)
m:nat.(lt m (weight t0))t1:T.(eq nat (weight t1) m)(P t1)
                   end of H2
                    assume vT
                    suppose H3lt (weight v) (weight t0)
                      by (refl_equal . .)
                      we proved eq nat (weight v) (weight v)
                      by (H2 . H3 . previous)
                      we proved P v
                   we proved v:T.(lt (weight v) (weight t0))(P v)
                   by (H . previous)
                   we proved P t0
                we proved t0:T.(eq nat (weight t0) n0)(P t0)
                that is equivalent to λt0:T.P t0 n0
             we proved n0:nat.(m:nat.(lt m n0)(Q λt0:T.P t0 m))(Q λt0:T.P t0 n0)
             by (lt_wf_ind . . previous)
             we proved λt0:T.P t0 n
             that is equivalent to t:T.(eq nat (weight t) n)(P t)
          we proved n:nat.t:T.(eq nat (weight t) n)(P t)
          by (tlt_wf__q_ind . previous .)
          we proved P t
       we proved 
          P:TProp
            .t:T.(v:T.(lt (weight v) (weight t))(P v))(P t)
              t:T.(P t)
       that is equivalent to 
          P:TProp.(t:T.(v:T.(tlt v t)(P v))(P t))t:T.(P t)