DEFINITION tlt_wf__q_ind()
TYPE =
       P:TProp
         .n:nat.(λP0:TProp.λn0:nat.t:T.(eq nat (weight t) n0)(P0 t) P n)
           t:T.(P t)
BODY =
       we must prove 
             P:TProp
               .n:nat.(λP0:TProp.λn0:nat.t:T.(eq nat (weight t) n0)(P0 t) P n)
                 t:T.(P t)
       or equivalently 
             P:TProp
               .(n:nat.t:T.(eq nat (weight t) n)(P t))t:T.(P t)
        assume PTProp
        suppose Hn:nat.t:T.(eq nat (weight t) n)(P t)
        assume tT
          by (refl_equal . .)
          we proved eq nat (weight t) (weight t)
          by (H . . previous)
          we proved P t
       we proved 
          P:TProp
            .(n:nat.t:T.(eq nat (weight t) n)(P t))t:T.(P t)
       that is equivalent to 
          P:TProp
            .n:nat.(λP0:TProp.λn0:nat.t:T.(eq nat (weight t) n0)(P0 t) P n)
              t:T.(P t)