DEFINITION tlt_trans()
TYPE =
       v:T.u:T.t:T.(tlt u v)(tlt v t)(tlt u t)
BODY =
        assume vT
        assume uT
        assume tT
          we must prove (tlt u v)(tlt v t)(tlt u t)
          or equivalently (lt (weight u) (weight v))(tlt v t)(tlt u t)
          suppose Hlt (weight u) (weight v)
             we must prove (tlt v t)(tlt u t)
             or equivalently (lt (weight v) (weight t))(tlt u t)
             suppose H0lt (weight v) (weight t)
                by (lt_trans . . . H H0)
                we proved lt (weight u) (weight t)
                that is equivalent to tlt u t
             we proved (lt (weight v) (weight t))(tlt u t)
             that is equivalent to (tlt v t)(tlt u t)
          we proved (lt (weight u) (weight v))(tlt v t)(tlt u t)
          that is equivalent to (tlt u v)(tlt v t)(tlt u t)
       we proved v:T.u:T.t:T.(tlt u v)(tlt v t)(tlt u t)