DEFINITION tslt_wf__q_ind()
TYPE =
       P:TListProp
         .n:nat
             .λP0:TListProp.λn0:nat.ts:TList.(eq nat (tslen ts) n0)(P0 ts)
               P
               n
           ts:TList.(P ts)
BODY =
       we must prove 
             P:TListProp
               .n:nat
                   .λP0:TListProp.λn0:nat.ts:TList.(eq nat (tslen ts) n0)(P0 ts)
                     P
                     n
                 ts:TList.(P ts)
       or equivalently 
             P:TListProp
               .n:nat.ts:TList.(eq nat (tslen ts) n)(P ts)
                 ts:TList.(P ts)
        assume PTListProp
        suppose Hn:nat.ts:TList.(eq nat (tslen ts) n)(P ts)
        assume tsTList
          by (refl_equal . .)
          we proved eq nat (tslen ts) (tslen ts)
          by (H . . previous)
          we proved P ts
       we proved 
          P:TListProp
            .n:nat.ts:TList.(eq nat (tslen ts) n)(P ts)
              ts:TList.(P ts)
       that is equivalent to 
          P:TListProp
            .n:nat
                .λP0:TListProp.λn0:nat.ts:TList.(eq nat (tslen ts) n0)(P0 ts)
                  P
                  n
              ts:TList.(P ts)