DEFINITION subst1_ind()
TYPE =
∀i:nat
.∀v:T
.∀t1:T
.∀P:T→Prop
.(P t1)→(∀t:T.(subst0 i v t1 t)→(P t))→∀t:T.(subst1 i v t1 t)→(P t)
BODY =
assume i: nat
assume v: T
assume t1: T
assume P: T→Prop
suppose H: P t1
suppose H1: ∀t:T.(subst0 i v t1 t)→(P t)
assume t: T
suppose H2: subst1 i v t1 t
by cases on H2 we prove P t
case subst1_refl ⇒
the thesis becomes the hypothesis H
case subst1_single t2:T H3:subst0 i v t1 t2 ⇒
the thesis becomes P t2
by (H1 . H3)
P t2
we proved P t
we proved
∀i:nat
.∀v:T
.∀t1:T
.∀P:T→Prop
.(P t1)→(∀t:T.(subst0 i v t1 t)→(P t))→∀t:T.(subst1 i v t1 t)→(P t)