DEFINITION subst0_weight_le()
TYPE =
       u:T
         .t:T
           .z:T
             .d:nat
               .subst0 d u t z
                 f:natnat
                      .g:natnat
                        .m:nat.(le (f m) (g m))
                          (lt (weight_map f (lift (S d) O u)) (g d)
                               le (weight_map f z) (weight_map g t))
BODY =
        assume uT
        assume tT
        assume zT
        assume dnat
        suppose Hsubst0 d u t z
          we proceed by induction on H to prove 
             f:natnat
               .g:natnat
                 .m:nat.(le (f m) (g m))
                   (lt (weight_map f (lift (S d) O u)) (g d)
                        le (weight_map f z) (weight_map g t))
             case subst0_lref : v:T i:nat 
                the thesis becomes 
                f:natnat
                  .g:natnat
                    .m:nat.(le (f m) (g m))
                      H1:lt (weight_map f (lift (S i) O v)) (g i)
                           .le
                             weight_map f (lift (S i) O v)
                             weight_map g (TLRef i)
                    assume fnatnat
                    assume gnatnat
                    suppose m:nat.(le (f m) (g m))
                    suppose H1lt (weight_map f (lift (S i) O v)) (g i)
                      consider H1
                      we proved lt (weight_map f (lift (S i) O v)) (g i)
                      that is equivalent to 
                         le
                           S (weight_map f (lift (S i) O v))
                           weight_map g (TLRef i)
                      by (le_S . . previous)
                      we proved 
                         le
                           S (weight_map f (lift (S i) O v))
                           S (weight_map g (TLRef i))
                      by (le_S_n . . previous)
                      we proved 
                         le
                           weight_map f (lift (S i) O v)
                           weight_map g (TLRef i)

                      f:natnat
                        .g:natnat
                          .m:nat.(le (f m) (g m))
                            H1:lt (weight_map f (lift (S i) O v)) (g i)
                                 .le
                                   weight_map f (lift (S i) O v)
                                   weight_map g (TLRef i)
             case subst0_fst : v:T u2:T u1:T i:nat :subst0 i v u1 u2 t0:T k:K 
                the thesis becomes 
                f:natnat
                  .g:natnat
                    .m:nat.(le (f m) (g m))
                      (lt (weight_map f (lift (S i) O v)) (g i)
                           le (weight_map f (THead k u2 t0)) (weight_map g (THead k u1 t0)))
                (H1) by induction hypothesis we know 
                   f:natnat
                     .g:natnat
                       .m:nat.(le (f m) (g m))
                         (lt (weight_map f (lift (S i) O v)) (g i)
                              le (weight_map f u2) (weight_map g u1))
                   we proceed by induction on k to prove 
                      f:natnat
                        .g:natnat
                          .m:nat.(le (f m) (g m))
                            (lt (weight_map f (lift (S i) O v)) (g i)
                                 le (weight_map f (THead k u2 t0)) (weight_map g (THead k u1 t0)))
                      case Bind : b:B 
                         the thesis becomes 
                         f:natnat
                           .g:natnat
                             .m:nat.(le (f m) (g m))
                               (lt (weight_map f (lift (S i) O v)) (g i)
                                    (le
                                         weight_map f (THead (Bind b) u2 t0)
                                         weight_map g (THead (Bind b) u1 t0)))
                            we proceed by induction on b to prove 
                               f:natnat
                                 .g:natnat
                                   .m:nat.(le (f m) (g m))
                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                          (le
                                               weight_map f (THead (Bind b) u2 t0)
                                               weight_map g (THead (Bind b) u1 t0)))
                               case Abbr : 
                                  the thesis becomes 
                                  f:natnat
                                    .g:natnat
                                      .m:nat.(le (f m) (g m))
                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                             (le
                                                  weight_map f (THead (Bind Abbr) u2 t0)
                                                  weight_map g (THead (Bind Abbr) u1 t0)))
                                      assume fnatnat
                                      assume gnatnat
                                      suppose H2m:nat.(le (f m) (g m))
                                      suppose H3lt (weight_map f (lift (S i) O v)) (g i)
                                        (h1
                                           by (H1 . . H2 H3)
le (weight_map f u2) (weight_map g u1)
                                        end of h1
                                        (h2
                                           assume nnat
                                              by (H1 . . H2 H3)
                                              we proved le (weight_map f u2) (weight_map g u1)
                                              by (le_n_S . . previous)
                                              we proved le (S (weight_map f u2)) (S (weight_map g u1))
                                              by (wadd_le . . H2 . . previous .)
                                              we proved 
                                                 le
                                                   wadd f (S (weight_map f u2)) n
                                                   wadd g (S (weight_map g u1)) n
                                           we proved 
                                              n:nat
                                                .le
                                                  wadd f (S (weight_map f u2)) n
                                                  wadd g (S (weight_map g u1)) n
                                           by (weight_le . . . previous)

                                              le
                                                weight_map (wadd f (S (weight_map f u2))) t0
                                                weight_map (wadd g (S (weight_map g u1))) t0
                                        end of h2
                                        by (le_plus_plus . . . . h1 h2)
                                        we proved 
                                           le
                                             plus
                                               weight_map f u2
                                               weight_map (wadd f (S (weight_map f u2))) t0
                                             plus
                                               weight_map g u1
                                               weight_map (wadd g (S (weight_map g u1))) t0
                                        by (le_n_S . . previous)
                                        we proved 
                                           le
                                             S
                                               plus
                                                 weight_map f u2
                                                 weight_map (wadd f (S (weight_map f u2))) t0
                                             S
                                               plus
                                                 weight_map g u1
                                                 weight_map (wadd g (S (weight_map g u1))) t0
                                        that is equivalent to 
                                           le
                                             weight_map f (THead (Bind Abbr) u2 t0)
                                             weight_map g (THead (Bind Abbr) u1 t0)

                                        f:natnat
                                          .g:natnat
                                            .m:nat.(le (f m) (g m))
                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                   (le
                                                        weight_map f (THead (Bind Abbr) u2 t0)
                                                        weight_map g (THead (Bind Abbr) u1 t0)))
                               case Abst : 
                                  the thesis becomes 
                                  f:natnat
                                    .g:natnat
                                      .m:nat.(le (f m) (g m))
                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                             (le
                                                  weight_map f (THead (Bind Abst) u2 t0)
                                                  weight_map g (THead (Bind Abst) u1 t0)))
                                      assume fnatnat
                                      assume gnatnat
                                      suppose H2m:nat.(le (f m) (g m))
                                      suppose H3lt (weight_map f (lift (S i) O v)) (g i)
                                        (h1
                                           by (H1 . . H2 H3)
le (weight_map f u2) (weight_map g u1)
                                        end of h1
                                        (h2
                                           assume nnat
                                              by (le_n .)
                                              we proved le O O
                                              by (wadd_le . . H2 . . previous .)
                                              we proved le (wadd f O n) (wadd g O n)
                                           we proved n:nat.(le (wadd f O n) (wadd g O n))
                                           by (weight_le . . . previous)
le (weight_map (wadd f O) t0) (weight_map (wadd g O) t0)
                                        end of h2
                                        by (le_plus_plus . . . . h1 h2)
                                        we proved 
                                           le
                                             plus (weight_map f u2) (weight_map (wadd f O) t0)
                                             plus (weight_map g u1) (weight_map (wadd g O) t0)
                                        by (le_n_S . . previous)
                                        we proved 
                                           le
                                             S (plus (weight_map f u2) (weight_map (wadd f O) t0))
                                             S (plus (weight_map g u1) (weight_map (wadd g O) t0))
                                        that is equivalent to 
                                           le
                                             weight_map f (THead (Bind Abst) u2 t0)
                                             weight_map g (THead (Bind Abst) u1 t0)

                                        f:natnat
                                          .g:natnat
                                            .m:nat.(le (f m) (g m))
                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                   (le
                                                        weight_map f (THead (Bind Abst) u2 t0)
                                                        weight_map g (THead (Bind Abst) u1 t0)))
                               case Void : 
                                  the thesis becomes 
                                  f:natnat
                                    .g:natnat
                                      .m:nat.(le (f m) (g m))
                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                             (le
                                                  weight_map f (THead (Bind Void) u2 t0)
                                                  weight_map g (THead (Bind Void) u1 t0)))
                                      assume fnatnat
                                      assume gnatnat
                                      suppose H2m:nat.(le (f m) (g m))
                                      suppose H3lt (weight_map f (lift (S i) O v)) (g i)
                                        (h1
                                           by (H1 . . H2 H3)
le (weight_map f u2) (weight_map g u1)
                                        end of h1
                                        (h2
                                           assume nnat
                                              by (le_n .)
                                              we proved le O O
                                              by (wadd_le . . H2 . . previous .)
                                              we proved le (wadd f O n) (wadd g O n)
                                           we proved n:nat.(le (wadd f O n) (wadd g O n))
                                           by (weight_le . . . previous)
le (weight_map (wadd f O) t0) (weight_map (wadd g O) t0)
                                        end of h2
                                        by (le_plus_plus . . . . h1 h2)
                                        we proved 
                                           le
                                             plus (weight_map f u2) (weight_map (wadd f O) t0)
                                             plus (weight_map g u1) (weight_map (wadd g O) t0)
                                        by (le_n_S . . previous)
                                        we proved 
                                           le
                                             S (plus (weight_map f u2) (weight_map (wadd f O) t0))
                                             S (plus (weight_map g u1) (weight_map (wadd g O) t0))
                                        that is equivalent to 
                                           le
                                             weight_map f (THead (Bind Void) u2 t0)
                                             weight_map g (THead (Bind Void) u1 t0)

                                        f:natnat
                                          .g:natnat
                                            .m:nat.(le (f m) (g m))
                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                   (le
                                                        weight_map f (THead (Bind Void) u2 t0)
                                                        weight_map g (THead (Bind Void) u1 t0)))

                               f:natnat
                                 .g:natnat
                                   .m:nat.(le (f m) (g m))
                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                          (le
                                               weight_map f (THead (Bind b) u2 t0)
                                               weight_map g (THead (Bind b) u1 t0)))
                      case Flat : :F 
                         the thesis becomes 
                         f0:natnat
                           .g:natnat
                             .H2:m:nat.(le (f0 m) (g m))
                               .H3:lt (weight_map f0 (lift (S i) O v)) (g i)
                                 .le
                                   S (plus (weight_map f0 u2) (weight_map f0 t0))
                                   S (plus (weight_map g u1) (weight_map g t0))
                             assume f0natnat
                             assume gnatnat
                             suppose H2m:nat.(le (f0 m) (g m))
                             suppose H3lt (weight_map f0 (lift (S i) O v)) (g i)
                               (h1
                                  by (H1 . . H2 H3)
le (weight_map f0 u2) (weight_map g u1)
                               end of h1
                               (h2
                                  by (weight_le . . . H2)
le (weight_map f0 t0) (weight_map g t0)
                               end of h2
                               by (le_plus_plus . . . . h1 h2)
                               we proved 
                                  le
                                    plus (weight_map f0 u2) (weight_map f0 t0)
                                    plus (weight_map g u1) (weight_map g t0)
                               by (le_n_S . . previous)
                               we proved 
                                  le
                                    S (plus (weight_map f0 u2) (weight_map f0 t0))
                                    S (plus (weight_map g u1) (weight_map g t0))
                               that is equivalent to 
                                  le
                                    weight_map f0 (THead (Flat __5) u2 t0)
                                    weight_map g (THead (Flat __5) u1 t0)

                               f0:natnat
                                 .g:natnat
                                   .H2:m:nat.(le (f0 m) (g m))
                                     .H3:lt (weight_map f0 (lift (S i) O v)) (g i)
                                       .le
                                         S (plus (weight_map f0 u2) (weight_map f0 t0))
                                         S (plus (weight_map g u1) (weight_map g t0))

                      f:natnat
                        .g:natnat
                          .m:nat.(le (f m) (g m))
                            (lt (weight_map f (lift (S i) O v)) (g i)
                                 le (weight_map f (THead k u2 t0)) (weight_map g (THead k u1 t0)))
             case subst0_snd 
                we need to prove 
                k:K
                  .v:T
                    .t2:T
                      .t1:T
                        .i:nat
                          .subst0 (s k i) v t1 t2
                            (f:natnat
                                   .g:natnat
                                     .m:nat.(le (f m) (g m))
                                       (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                            le (weight_map f t2) (weight_map g t1))
                                 u0:T
                                      .f:natnat
                                        .g:natnat
                                          .m:nat.(le (f m) (g m))
                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                 le (weight_map f (THead k u0 t2)) (weight_map g (THead k u0 t1))))
                   assume kK
                      we proceed by induction on k to prove 
                         v:T
                           .t2:T
                             .t1:T
                               .i:nat
                                 .subst0 (s k i) v t1 t2
                                   (f:natnat
                                          .g:natnat
                                            .m:nat.(le (f m) (g m))
                                              (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                                   le (weight_map f t2) (weight_map g t1))
                                        u0:T
                                             .f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                        le (weight_map f (THead k u0 t2)) (weight_map g (THead k u0 t1))))
                         case Bind : b:B 
                            the thesis becomes 
                            v:T
                              .t2:T
                                .t1:T
                                  .i:nat
                                    .subst0 (s (Bind b) i) v t1 t2
                                      (f:natnat
                                             .g:natnat
                                               .m:nat.(le (f m) (g m))
                                                 ((lt
                                                        weight_map f (lift (S (s (Bind b) i)) O v)
                                                        g (s (Bind b) i))
                                                      le (weight_map f t2) (weight_map g t1))
                                           u0:T
                                                .f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      (lt (weight_map f (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f (THead (Bind b) u0 t2)
                                                                weight_map g (THead (Bind b) u0 t1))))
                               we proceed by induction on b to prove 
                                  v:T
                                    .t2:T
                                      .t1:T
                                        .i:nat
                                          .subst0 (s (Bind b) i) v t1 t2
                                            (f:natnat
                                                   .g:natnat
                                                     .m:nat.(le (f m) (g m))
                                                       ((lt
                                                              weight_map f (lift (S (s (Bind b) i)) O v)
                                                              g (s (Bind b) i))
                                                            le (weight_map f t2) (weight_map g t1))
                                                 u0:T
                                                      .f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind b) u0 t2)
                                                                      weight_map g (THead (Bind b) u0 t1))))
                                  case Abbr : 
                                     the thesis becomes 
                                     v:T
                                       .t2:T
                                         .t1:T
                                           .i:nat
                                             .subst0 (s (Bind Abbr) i) v t1 t2
                                               (f:natnat
                                                      .g:natnat
                                                        .m:nat.(le (f m) (g m))
                                                          ((lt
                                                                 weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                 g (s (Bind Abbr) i))
                                                               le (weight_map f t2) (weight_map g t1))
                                                    u0:T
                                                         .f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abbr) u0 t2)
                                                                         weight_map g (THead (Bind Abbr) u0 t1))))
                                         assume vT
                                         assume t2T
                                         assume t1T
                                         assume inat
                                           we must prove 
                                                 subst0 (s (Bind Abbr) i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                     g (s (Bind Abbr) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        u0:T
                                                             .f:natnat
                                                               .g:natnat
                                                                 .m:nat.(le (f m) (g m))
                                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                                        (le
                                                                             weight_map f (THead (Bind Abbr) u0 t2)
                                                                             weight_map g (THead (Bind Abbr) u0 t1))))
                                           or equivalently 
                                                 subst0 (S i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                     g (s (Bind Abbr) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        u0:T
                                                             .f:natnat
                                                               .g:natnat
                                                                 .m:nat.(le (f m) (g m))
                                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                                        (le
                                                                             weight_map f (THead (Bind Abbr) u0 t2)
                                                                             weight_map g (THead (Bind Abbr) u0 t1))))
                                           suppose subst0 (S i) v t1 t2
                                              we must prove 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                   g (s (Bind Abbr) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      u0:T
                                                           .f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abbr) u0 t2)
                                                                           weight_map g (THead (Bind Abbr) u0 t1)))
                                              or equivalently 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      u0:T
                                                           .f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abbr) u0 t2)
                                                                           weight_map g (THead (Bind Abbr) u0 t1)))
                                               suppose H1
                                                  f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                             le (weight_map f t2) (weight_map g t1))
                                               assume u0T
                                               assume fnatnat
                                               assume gnatnat
                                               suppose H2m:nat.(le (f m) (g m))
                                               suppose H3lt (weight_map f (lift (S i) O v)) (g i)
                                                 (h1
                                                    by (weight_le . . . H2)
le (weight_map f u0) (weight_map g u0)
                                                 end of h1
                                                 (h2
                                                    (h1
                                                       assume mnat
                                                          by (weight_le . . . H2)
                                                          we proved le (weight_map f u0) (weight_map g u0)
                                                          by (le_n_S . . previous)
                                                          we proved le (S (weight_map f u0)) (S (weight_map g u0))
                                                          by (wadd_le . . H2 . . previous .)
                                                          we proved 
                                                             le
                                                               wadd f (S (weight_map f u0)) m
                                                               wadd g (S (weight_map g u0)) m

                                                          m:nat
                                                            .le
                                                              wadd f (S (weight_map f u0)) m
                                                              wadd g (S (weight_map g u0)) m
                                                    end of h1
                                                    (h2
                                                       by (lift_weight_add_O . . . .)
                                                       we proved 
                                                          eq
                                                            nat
                                                            weight_map f (lift (S i) O v)
                                                            weight_map
                                                              wadd f (S (weight_map f u0))
                                                              lift (S (S i)) O v
                                                       we proceed by induction on the previous result to prove 
                                                          lt
                                                            weight_map
                                                              wadd f (S (weight_map f u0))
                                                              lift (S (S i)) O v
                                                            g i
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H3
                                                       we proved 
                                                          lt
                                                            weight_map
                                                              wadd f (S (weight_map f u0))
                                                              lift (S (S i)) O v
                                                            g i

                                                          lt
                                                            weight_map
                                                              wadd f (S (weight_map f u0))
                                                              lift (S (S i)) O v
                                                            wadd g (S (weight_map g u0)) (S i)
                                                    end of h2
                                                    by (H1 . . h1 h2)

                                                       le
                                                         weight_map (wadd f (S (weight_map f u0))) t2
                                                         weight_map (wadd g (S (weight_map g u0))) t1
                                                 end of h2
                                                 by (le_plus_plus . . . . h1 h2)
                                                 we proved 
                                                    le
                                                      plus
                                                        weight_map f u0
                                                        weight_map (wadd f (S (weight_map f u0))) t2
                                                      plus
                                                        weight_map g u0
                                                        weight_map (wadd g (S (weight_map g u0))) t1
                                                 by (le_n_S . . previous)
                                                 we proved 
                                                    le
                                                      S
                                                        plus
                                                          weight_map f u0
                                                          weight_map (wadd f (S (weight_map f u0))) t2
                                                      S
                                                        plus
                                                          weight_map g u0
                                                          weight_map (wadd g (S (weight_map g u0))) t1
                                                 that is equivalent to 
                                                    le
                                                      weight_map f (THead (Bind Abbr) u0 t2)
                                                      weight_map g (THead (Bind Abbr) u0 t1)
                                              we proved 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   u0:T
                                                        .f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abbr) u0 t2)
                                                                        weight_map g (THead (Bind Abbr) u0 t1)))
                                              that is equivalent to 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         ((lt
                                                                weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                g (s (Bind Abbr) i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   u0:T
                                                        .f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abbr) u0 t2)
                                                                        weight_map g (THead (Bind Abbr) u0 t1)))
                                           we proved 
                                              subst0 (S i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                  g (s (Bind Abbr) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     u0:T
                                                          .f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                                     (le
                                                                          weight_map f (THead (Bind Abbr) u0 t2)
                                                                          weight_map g (THead (Bind Abbr) u0 t1))))
                                           that is equivalent to 
                                              subst0 (s (Bind Abbr) i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                  g (s (Bind Abbr) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     u0:T
                                                          .f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                                     (le
                                                                          weight_map f (THead (Bind Abbr) u0 t2)
                                                                          weight_map g (THead (Bind Abbr) u0 t1))))

                                           v:T
                                             .t2:T
                                               .t1:T
                                                 .i:nat
                                                   .subst0 (s (Bind Abbr) i) v t1 t2
                                                     (f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                ((lt
                                                                       weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                       g (s (Bind Abbr) i))
                                                                     le (weight_map f t2) (weight_map g t1))
                                                          u0:T
                                                               .f:natnat
                                                                 .g:natnat
                                                                   .m:nat.(le (f m) (g m))
                                                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                                                          (le
                                                                               weight_map f (THead (Bind Abbr) u0 t2)
                                                                               weight_map g (THead (Bind Abbr) u0 t1))))
                                  case Abst : 
                                     the thesis becomes 
                                     v:T
                                       .t2:T
                                         .t1:T
                                           .i:nat
                                             .subst0 (s (Bind Abst) i) v t1 t2
                                               (f:natnat
                                                      .g:natnat
                                                        .m:nat.(le (f m) (g m))
                                                          ((lt
                                                                 weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                 g (s (Bind Abst) i))
                                                               le (weight_map f t2) (weight_map g t1))
                                                    u0:T
                                                         .f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abst) u0 t2)
                                                                         weight_map g (THead (Bind Abst) u0 t1))))
                                         assume vT
                                         assume t2T
                                         assume t1T
                                         assume inat
                                           we must prove 
                                                 subst0 (s (Bind Abst) i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                     g (s (Bind Abst) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        u0:T
                                                             .f:natnat
                                                               .g:natnat
                                                                 .m:nat.(le (f m) (g m))
                                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                                        (le
                                                                             weight_map f (THead (Bind Abst) u0 t2)
                                                                             weight_map g (THead (Bind Abst) u0 t1))))
                                           or equivalently 
                                                 subst0 (S i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                     g (s (Bind Abst) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        u0:T
                                                             .f:natnat
                                                               .g:natnat
                                                                 .m:nat.(le (f m) (g m))
                                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                                        (le
                                                                             weight_map f (THead (Bind Abst) u0 t2)
                                                                             weight_map g (THead (Bind Abst) u0 t1))))
                                           suppose subst0 (S i) v t1 t2
                                              we must prove 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                   g (s (Bind Abst) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      u0:T
                                                           .f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abst) u0 t2)
                                                                           weight_map g (THead (Bind Abst) u0 t1)))
                                              or equivalently 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      u0:T
                                                           .f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abst) u0 t2)
                                                                           weight_map g (THead (Bind Abst) u0 t1)))
                                               suppose H1
                                                  f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                             le (weight_map f t2) (weight_map g t1))
                                               assume u0T
                                               assume fnatnat
                                               assume gnatnat
                                               suppose H2m:nat.(le (f m) (g m))
                                               suppose H3lt (weight_map f (lift (S i) O v)) (g i)
                                                 (h1
                                                    by (weight_le . . . H2)
le (weight_map f u0) (weight_map g u0)
                                                 end of h1
                                                 (h2
                                                    (h1
                                                       assume mnat
                                                          by (le_n .)
                                                          we proved le O O
                                                          by (wadd_le . . H2 . . previous .)
                                                          we proved le (wadd f O m) (wadd g O m)
m:nat.(le (wadd f O m) (wadd g O m))
                                                    end of h1
                                                    (h2
                                                       by (lift_weight_add_O . . . .)
                                                       we proved 
                                                          eq
                                                            nat
                                                            weight_map f (lift (S i) O v)
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                       we proceed by induction on the previous result to prove lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H3
                                                       we proved lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)

                                                          lt
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                            wadd g O (S i)
                                                    end of h2
                                                    by (H1 . . h1 h2)
le (weight_map (wadd f O) t2) (weight_map (wadd g O) t1)
                                                 end of h2
                                                 by (le_plus_plus . . . . h1 h2)
                                                 we proved 
                                                    le
                                                      plus (weight_map f u0) (weight_map (wadd f O) t2)
                                                      plus (weight_map g u0) (weight_map (wadd g O) t1)
                                                 by (le_n_S . . previous)
                                                 we proved 
                                                    le
                                                      S (plus (weight_map f u0) (weight_map (wadd f O) t2))
                                                      S (plus (weight_map g u0) (weight_map (wadd g O) t1))
                                                 that is equivalent to 
                                                    le
                                                      weight_map f (THead (Bind Abst) u0 t2)
                                                      weight_map g (THead (Bind Abst) u0 t1)
                                              we proved 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   u0:T
                                                        .f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abst) u0 t2)
                                                                        weight_map g (THead (Bind Abst) u0 t1)))
                                              that is equivalent to 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         ((lt
                                                                weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                g (s (Bind Abst) i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   u0:T
                                                        .f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abst) u0 t2)
                                                                        weight_map g (THead (Bind Abst) u0 t1)))
                                           we proved 
                                              subst0 (S i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                  g (s (Bind Abst) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     u0:T
                                                          .f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                                     (le
                                                                          weight_map f (THead (Bind Abst) u0 t2)
                                                                          weight_map g (THead (Bind Abst) u0 t1))))
                                           that is equivalent to 
                                              subst0 (s (Bind Abst) i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                  g (s (Bind Abst) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     u0:T
                                                          .f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                                     (le
                                                                          weight_map f (THead (Bind Abst) u0 t2)
                                                                          weight_map g (THead (Bind Abst) u0 t1))))

                                           v:T
                                             .t2:T
                                               .t1:T
                                                 .i:nat
                                                   .subst0 (s (Bind Abst) i) v t1 t2
                                                     (f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                ((lt
                                                                       weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                       g (s (Bind Abst) i))
                                                                     le (weight_map f t2) (weight_map g t1))
                                                          u0:T
                                                               .f:natnat
                                                                 .g:natnat
                                                                   .m:nat.(le (f m) (g m))
                                                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                                                          (le
                                                                               weight_map f (THead (Bind Abst) u0 t2)
                                                                               weight_map g (THead (Bind Abst) u0 t1))))
                                  case Void : 
                                     the thesis becomes 
                                     v:T
                                       .t2:T
                                         .t1:T
                                           .i:nat
                                             .subst0 (s (Bind Void) i) v t1 t2
                                               (f:natnat
                                                      .g:natnat
                                                        .m:nat.(le (f m) (g m))
                                                          ((lt
                                                                 weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                 g (s (Bind Void) i))
                                                               le (weight_map f t2) (weight_map g t1))
                                                    u0:T
                                                         .f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Void) u0 t2)
                                                                         weight_map g (THead (Bind Void) u0 t1))))
                                         assume vT
                                         assume t2T
                                         assume t1T
                                         assume inat
                                           we must prove 
                                                 subst0 (s (Bind Void) i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                     g (s (Bind Void) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        u0:T
                                                             .f:natnat
                                                               .g:natnat
                                                                 .m:nat.(le (f m) (g m))
                                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                                        (le
                                                                             weight_map f (THead (Bind Void) u0 t2)
                                                                             weight_map g (THead (Bind Void) u0 t1))))
                                           or equivalently 
                                                 subst0 (S i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                     g (s (Bind Void) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        u0:T
                                                             .f:natnat
                                                               .g:natnat
                                                                 .m:nat.(le (f m) (g m))
                                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                                        (le
                                                                             weight_map f (THead (Bind Void) u0 t2)
                                                                             weight_map g (THead (Bind Void) u0 t1))))
                                           suppose subst0 (S i) v t1 t2
                                              we must prove 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                   g (s (Bind Void) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      u0:T
                                                           .f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Void) u0 t2)
                                                                           weight_map g (THead (Bind Void) u0 t1)))
                                              or equivalently 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      u0:T
                                                           .f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Void) u0 t2)
                                                                           weight_map g (THead (Bind Void) u0 t1)))
                                               suppose H1
                                                  f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                             le (weight_map f t2) (weight_map g t1))
                                               assume u0T
                                               assume fnatnat
                                               assume gnatnat
                                               suppose H2m:nat.(le (f m) (g m))
                                               suppose H3lt (weight_map f (lift (S i) O v)) (g i)
                                                 (h1
                                                    by (weight_le . . . H2)
le (weight_map f u0) (weight_map g u0)
                                                 end of h1
                                                 (h2
                                                    (h1
                                                       assume mnat
                                                          by (le_n .)
                                                          we proved le O O
                                                          by (wadd_le . . H2 . . previous .)
                                                          we proved le (wadd f O m) (wadd g O m)
m:nat.(le (wadd f O m) (wadd g O m))
                                                    end of h1
                                                    (h2
                                                       by (lift_weight_add_O . . . .)
                                                       we proved 
                                                          eq
                                                            nat
                                                            weight_map f (lift (S i) O v)
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                       we proceed by induction on the previous result to prove lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H3
                                                       we proved lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)

                                                          lt
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                            wadd g O (S i)
                                                    end of h2
                                                    by (H1 . . h1 h2)
le (weight_map (wadd f O) t2) (weight_map (wadd g O) t1)
                                                 end of h2
                                                 by (le_plus_plus . . . . h1 h2)
                                                 we proved 
                                                    le
                                                      plus (weight_map f u0) (weight_map (wadd f O) t2)
                                                      plus (weight_map g u0) (weight_map (wadd g O) t1)
                                                 by (le_n_S . . previous)
                                                 we proved 
                                                    le
                                                      S (plus (weight_map f u0) (weight_map (wadd f O) t2))
                                                      S (plus (weight_map g u0) (weight_map (wadd g O) t1))
                                                 that is equivalent to 
                                                    le
                                                      weight_map f (THead (Bind Void) u0 t2)
                                                      weight_map g (THead (Bind Void) u0 t1)
                                              we proved 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   u0:T
                                                        .f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Void) u0 t2)
                                                                        weight_map g (THead (Bind Void) u0 t1)))
                                              that is equivalent to 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         ((lt
                                                                weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                g (s (Bind Void) i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   u0:T
                                                        .f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Void) u0 t2)
                                                                        weight_map g (THead (Bind Void) u0 t1)))
                                           we proved 
                                              subst0 (S i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                  g (s (Bind Void) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     u0:T
                                                          .f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                                     (le
                                                                          weight_map f (THead (Bind Void) u0 t2)
                                                                          weight_map g (THead (Bind Void) u0 t1))))
                                           that is equivalent to 
                                              subst0 (s (Bind Void) i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                  g (s (Bind Void) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     u0:T
                                                          .f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                                     (le
                                                                          weight_map f (THead (Bind Void) u0 t2)
                                                                          weight_map g (THead (Bind Void) u0 t1))))

                                           v:T
                                             .t2:T
                                               .t1:T
                                                 .i:nat
                                                   .subst0 (s (Bind Void) i) v t1 t2
                                                     (f:natnat
                                                            .g:natnat
                                                              .m:nat.(le (f m) (g m))
                                                                ((lt
                                                                       weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                       g (s (Bind Void) i))
                                                                     le (weight_map f t2) (weight_map g t1))
                                                          u0:T
                                                               .f:natnat
                                                                 .g:natnat
                                                                   .m:nat.(le (f m) (g m))
                                                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                                                          (le
                                                                               weight_map f (THead (Bind Void) u0 t2)
                                                                               weight_map g (THead (Bind Void) u0 t1))))

                                  v:T
                                    .t2:T
                                      .t1:T
                                        .i:nat
                                          .subst0 (s (Bind b) i) v t1 t2
                                            (f:natnat
                                                   .g:natnat
                                                     .m:nat.(le (f m) (g m))
                                                       ((lt
                                                              weight_map f (lift (S (s (Bind b) i)) O v)
                                                              g (s (Bind b) i))
                                                            le (weight_map f t2) (weight_map g t1))
                                                 u0:T
                                                      .f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind b) u0 t2)
                                                                      weight_map g (THead (Bind b) u0 t1))))
                         case Flat : :F 
                            the thesis becomes 
                            v:T
                              .t2:T
                                .t1:T
                                  .i:nat
                                    .subst0 (s (Flat __5) i) v t1 t2
                                      (f:natnat
                                             .g:natnat
                                               .m:nat.(le (f m) (g m))
                                                 ((lt
                                                        weight_map f (lift (S (s (Flat __9) i)) O v)
                                                        g (s (Flat __9) i))
                                                      le (weight_map f t2) (weight_map g t1))
                                           u0:T
                                                .f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      (lt (weight_map f (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f (THead (Flat __12) u0 t2)
                                                                weight_map g (THead (Flat __12) u0 t1))))
                                assume vT
                                assume t2T
                                assume t1T
                                assume inat
                                  we must prove 
                                        subst0 (s (Flat __5) i) v t1 t2
                                          (f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     ((lt
                                                            weight_map f (lift (S (s (Flat __9) i)) O v)
                                                            g (s (Flat __9) i))
                                                          le (weight_map f t2) (weight_map g t1))
                                               u0:T
                                                    .f:natnat
                                                      .g:natnat
                                                        .m:nat.(le (f m) (g m))
                                                          (lt (weight_map f (lift (S i) O v)) (g i)
                                                               (le
                                                                    weight_map f (THead (Flat __12) u0 t2)
                                                                    weight_map g (THead (Flat __12) u0 t1))))
                                  or equivalently 
                                        subst0 i v t1 t2
                                          (f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     ((lt
                                                            weight_map f (lift (S (s (Flat __9) i)) O v)
                                                            g (s (Flat __9) i))
                                                          le (weight_map f t2) (weight_map g t1))
                                               u0:T
                                                    .f:natnat
                                                      .g:natnat
                                                        .m:nat.(le (f m) (g m))
                                                          (lt (weight_map f (lift (S i) O v)) (g i)
                                                               (le
                                                                    weight_map f (THead (Flat __12) u0 t2)
                                                                    weight_map g (THead (Flat __12) u0 t1))))
                                  suppose subst0 i v t1 t2
                                     we must prove 
                                           f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   ((lt
                                                          weight_map f (lift (S (s (Flat __9) i)) O v)
                                                          g (s (Flat __9) i))
                                                        le (weight_map f t2) (weight_map g t1))
                                             u0:T
                                                  .f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                                             (le
                                                                  weight_map f (THead (Flat __12) u0 t2)
                                                                  weight_map g (THead (Flat __12) u0 t1)))
                                     or equivalently 
                                           f0:natnat
                                               .g:natnat
                                                 .m:nat.(le (f0 m) (g m))
                                                   (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                        le (weight_map f0 t2) (weight_map g t1))
                                             u0:T
                                                  .f0:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f0 m) (g m))
                                                        (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                             (le
                                                                  weight_map f0 (THead (Flat __12) u0 t2)
                                                                  weight_map g (THead (Flat __12) u0 t1)))
                                      suppose H1
                                         f0:natnat
                                           .g:natnat
                                             .m:nat.(le (f0 m) (g m))
                                               (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                    le (weight_map f0 t2) (weight_map g t1))
                                      assume u0T
                                      assume f0natnat
                                      assume gnatnat
                                      suppose H2m:nat.(le (f0 m) (g m))
                                      suppose H3lt (weight_map f0 (lift (S i) O v)) (g i)
                                        (h1
                                           by (weight_le . . . H2)
le (weight_map f0 u0) (weight_map g u0)
                                        end of h1
                                        (h2
                                           by (H1 . . H2 H3)
le (weight_map f0 t2) (weight_map g t1)
                                        end of h2
                                        by (le_plus_plus . . . . h1 h2)
                                        we proved 
                                           le
                                             plus (weight_map f0 u0) (weight_map f0 t2)
                                             plus (weight_map g u0) (weight_map g t1)
                                        by (le_n_S . . previous)
                                        we proved 
                                           le
                                             S (plus (weight_map f0 u0) (weight_map f0 t2))
                                             S (plus (weight_map g u0) (weight_map g t1))
                                        that is equivalent to 
                                           le
                                             weight_map f0 (THead (Flat __12) u0 t2)
                                             weight_map g (THead (Flat __12) u0 t1)
                                     we proved 
                                        f0:natnat
                                            .g:natnat
                                              .m:nat.(le (f0 m) (g m))
                                                (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                     le (weight_map f0 t2) (weight_map g t1))
                                          u0:T
                                               .f0:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f0 m) (g m))
                                                     (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                          (le
                                                               weight_map f0 (THead (Flat __12) u0 t2)
                                                               weight_map g (THead (Flat __12) u0 t1)))
                                     that is equivalent to 
                                        f:natnat
                                            .g:natnat
                                              .m:nat.(le (f m) (g m))
                                                ((lt
                                                       weight_map f (lift (S (s (Flat __9) i)) O v)
                                                       g (s (Flat __9) i))
                                                     le (weight_map f t2) (weight_map g t1))
                                          u0:T
                                               .f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                                          (le
                                                               weight_map f (THead (Flat __12) u0 t2)
                                                               weight_map g (THead (Flat __12) u0 t1)))
                                  we proved 
                                     subst0 i v t1 t2
                                       (f:natnat
                                              .g:natnat
                                                .m:nat.(le (f m) (g m))
                                                  ((lt
                                                         weight_map f (lift (S (s (Flat __9) i)) O v)
                                                         g (s (Flat __9) i))
                                                       le (weight_map f t2) (weight_map g t1))
                                            u0:T
                                                 .f:natnat
                                                   .g:natnat
                                                     .m:nat.(le (f m) (g m))
                                                       (lt (weight_map f (lift (S i) O v)) (g i)
                                                            (le
                                                                 weight_map f (THead (Flat __12) u0 t2)
                                                                 weight_map g (THead (Flat __12) u0 t1))))
                                  that is equivalent to 
                                     subst0 (s (Flat __5) i) v t1 t2
                                       (f:natnat
                                              .g:natnat
                                                .m:nat.(le (f m) (g m))
                                                  ((lt
                                                         weight_map f (lift (S (s (Flat __9) i)) O v)
                                                         g (s (Flat __9) i))
                                                       le (weight_map f t2) (weight_map g t1))
                                            u0:T
                                                 .f:natnat
                                                   .g:natnat
                                                     .m:nat.(le (f m) (g m))
                                                       (lt (weight_map f (lift (S i) O v)) (g i)
                                                            (le
                                                                 weight_map f (THead (Flat __12) u0 t2)
                                                                 weight_map g (THead (Flat __12) u0 t1))))

                                  v:T
                                    .t2:T
                                      .t1:T
                                        .i:nat
                                          .subst0 (s (Flat __5) i) v t1 t2
                                            (f:natnat
                                                   .g:natnat
                                                     .m:nat.(le (f m) (g m))
                                                       ((lt
                                                              weight_map f (lift (S (s (Flat __9) i)) O v)
                                                              g (s (Flat __9) i))
                                                            le (weight_map f t2) (weight_map g t1))
                                                 u0:T
                                                      .f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Flat __12) u0 t2)
                                                                      weight_map g (THead (Flat __12) u0 t1))))
                      we proved 
                         v:T
                           .t2:T
                             .t1:T
                               .i:nat
                                 .subst0 (s k i) v t1 t2
                                   (f:natnat
                                          .g:natnat
                                            .m:nat.(le (f m) (g m))
                                              (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                                   le (weight_map f t2) (weight_map g t1))
                                        u0:T
                                             .f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                        le (weight_map f (THead k u0 t2)) (weight_map g (THead k u0 t1))))

                      k:K
                        .v:T
                          .t2:T
                            .t1:T
                              .i:nat
                                .subst0 (s k i) v t1 t2
                                  (f:natnat
                                         .g:natnat
                                           .m:nat.(le (f m) (g m))
                                             (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                                  le (weight_map f t2) (weight_map g t1))
                                       u0:T
                                            .f:natnat
                                              .g:natnat
                                                .m:nat.(le (f m) (g m))
                                                  (lt (weight_map f (lift (S i) O v)) (g i)
                                                       le (weight_map f (THead k u0 t2)) (weight_map g (THead k u0 t1))))
             case subst0_both 
                we need to prove 
                v:T
                  .u1:T
                    .u2:T
                      .i:nat
                        .subst0 i v u1 u2
                          (f:natnat
                                 .g:natnat
                                   .m:nat.(le (f m) (g m))
                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                          le (weight_map f u2) (weight_map g u1))
                               k:K
                                    .t1:T
                                      .t2:T
                                        .subst0 (s k i) v t1 t2
                                          (f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                                          le (weight_map f t2) (weight_map g t1))
                                               f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                                             le (weight_map f (THead k u2 t2)) (weight_map g (THead k u1 t1)))))
                    assume vT
                    assume u1T
                    assume u2T
                    assume inat
                    suppose subst0 i v u1 u2
                    suppose H1
                       f:natnat
                         .g:natnat
                           .m:nat.(le (f m) (g m))
                             (lt (weight_map f (lift (S i) O v)) (g i)
                                  le (weight_map f u2) (weight_map g u1))
                    assume kK
                      we proceed by induction on k to prove 
                         t1:T
                           .t2:T
                             .subst0 (s k i) v t1 t2
                               (f:natnat
                                      .g:natnat
                                        .m:nat.(le (f m) (g m))
                                          (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                               le (weight_map f t2) (weight_map g t1))
                                    f:natnat
                                         .g:natnat
                                           .m:nat.(le (f m) (g m))
                                             (lt (weight_map f (lift (S i) O v)) (g i)
                                                  le (weight_map f (THead k u2 t2)) (weight_map g (THead k u1 t1))))
                         case Bind : b:B 
                            the thesis becomes 
                            t1:T
                              .t2:T
                                .subst0 (s (Bind b) i) v t1 t2
                                  (f:natnat
                                         .g:natnat
                                           .m:nat.(le (f m) (g m))
                                             ((lt
                                                    weight_map f (lift (S (s (Bind b) i)) O v)
                                                    g (s (Bind b) i))
                                                  le (weight_map f t2) (weight_map g t1))
                                       f:natnat
                                            .g:natnat
                                              .m:nat.(le (f m) (g m))
                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                     (le
                                                          weight_map f (THead (Bind b) u2 t2)
                                                          weight_map g (THead (Bind b) u1 t1))))
                               we proceed by induction on b to prove 
                                  t1:T
                                    .t2:T
                                      .subst0 (s (Bind b) i) v t1 t2
                                        (f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   ((lt
                                                          weight_map f (lift (S (s (Bind b) i)) O v)
                                                          g (s (Bind b) i))
                                                        le (weight_map f t2) (weight_map g t1))
                                             f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      (lt (weight_map f (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f (THead (Bind b) u2 t2)
                                                                weight_map g (THead (Bind b) u1 t1))))
                                  case Abbr : 
                                     the thesis becomes 
                                     t1:T
                                       .t2:T
                                         .subst0 (s (Bind Abbr) i) v t1 t2
                                           (f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      ((lt
                                                             weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                             g (s (Bind Abbr) i))
                                                           le (weight_map f t2) (weight_map g t1))
                                                f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S i) O v)) (g i)
                                                              (le
                                                                   weight_map f (THead (Bind Abbr) u2 t2)
                                                                   weight_map g (THead (Bind Abbr) u1 t1))))
                                         assume t1T
                                         assume t2T
                                           we must prove 
                                                 subst0 (s (Bind Abbr) i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                     g (s (Bind Abbr) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abbr) u2 t2)
                                                                           weight_map g (THead (Bind Abbr) u1 t1))))
                                           or equivalently 
                                                 subst0 (S i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                     g (s (Bind Abbr) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abbr) u2 t2)
                                                                           weight_map g (THead (Bind Abbr) u1 t1))))
                                           suppose subst0 (S i) v t1 t2
                                              we must prove 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                   g (s (Bind Abbr) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abbr) u2 t2)
                                                                         weight_map g (THead (Bind Abbr) u1 t1)))
                                              or equivalently 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abbr) u2 t2)
                                                                         weight_map g (THead (Bind Abbr) u1 t1)))
                                               suppose H3
                                                  f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                             le (weight_map f t2) (weight_map g t1))
                                               assume fnatnat
                                               assume gnatnat
                                               suppose H4m:nat.(le (f m) (g m))
                                               suppose H5lt (weight_map f (lift (S i) O v)) (g i)
                                                 (h1
                                                    by (H1 . . H4 H5)
le (weight_map f u2) (weight_map g u1)
                                                 end of h1
                                                 (h2
                                                    (h1
                                                       assume mnat
                                                          by (H1 . . H4 H5)
                                                          we proved le (weight_map f u2) (weight_map g u1)
                                                          by (le_n_S . . previous)
                                                          we proved le (S (weight_map f u2)) (S (weight_map g u1))
                                                          by (wadd_le . . H4 . . previous .)
                                                          we proved 
                                                             le
                                                               wadd f (S (weight_map f u2)) m
                                                               wadd g (S (weight_map g u1)) m

                                                          m:nat
                                                            .le
                                                              wadd f (S (weight_map f u2)) m
                                                              wadd g (S (weight_map g u1)) m
                                                    end of h1
                                                    (h2
                                                       by (lift_weight_add_O . . . .)
                                                       we proved 
                                                          eq
                                                            nat
                                                            weight_map f (lift (S i) O v)
                                                            weight_map
                                                              wadd f (S (weight_map f u2))
                                                              lift (S (S i)) O v
                                                       we proceed by induction on the previous result to prove 
                                                          lt
                                                            weight_map
                                                              wadd f (S (weight_map f u2))
                                                              lift (S (S i)) O v
                                                            g i
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H5
                                                       we proved 
                                                          lt
                                                            weight_map
                                                              wadd f (S (weight_map f u2))
                                                              lift (S (S i)) O v
                                                            g i

                                                          lt
                                                            weight_map
                                                              wadd f (S (weight_map f u2))
                                                              lift (S (S i)) O v
                                                            wadd g (S (weight_map g u1)) (S i)
                                                    end of h2
                                                    by (H3 . . h1 h2)

                                                       le
                                                         weight_map (wadd f (S (weight_map f u2))) t2
                                                         weight_map (wadd g (S (weight_map g u1))) t1
                                                 end of h2
                                                 by (le_plus_plus . . . . h1 h2)
                                                 we proved 
                                                    le
                                                      plus
                                                        weight_map f u2
                                                        weight_map (wadd f (S (weight_map f u2))) t2
                                                      plus
                                                        weight_map g u1
                                                        weight_map (wadd g (S (weight_map g u1))) t1
                                                 by (le_n_S . . previous)
                                                 we proved 
                                                    le
                                                      S
                                                        plus
                                                          weight_map f u2
                                                          weight_map (wadd f (S (weight_map f u2))) t2
                                                      S
                                                        plus
                                                          weight_map g u1
                                                          weight_map (wadd g (S (weight_map g u1))) t1
                                                 that is equivalent to 
                                                    le
                                                      weight_map f (THead (Bind Abbr) u2 t2)
                                                      weight_map g (THead (Bind Abbr) u1 t1)
                                              we proved 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind Abbr) u2 t2)
                                                                      weight_map g (THead (Bind Abbr) u1 t1)))
                                              that is equivalent to 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         ((lt
                                                                weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                g (s (Bind Abbr) i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind Abbr) u2 t2)
                                                                      weight_map g (THead (Bind Abbr) u1 t1)))
                                           we proved 
                                              subst0 (S i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                  g (s (Bind Abbr) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abbr) u2 t2)
                                                                        weight_map g (THead (Bind Abbr) u1 t1))))
                                           that is equivalent to 
                                              subst0 (s (Bind Abbr) i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                  g (s (Bind Abbr) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abbr) u2 t2)
                                                                        weight_map g (THead (Bind Abbr) u1 t1))))

                                           t1:T
                                             .t2:T
                                               .subst0 (s (Bind Abbr) i) v t1 t2
                                                 (f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Abbr) i)) O v)
                                                                   g (s (Bind Abbr) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abbr) u2 t2)
                                                                         weight_map g (THead (Bind Abbr) u1 t1))))
                                  case Abst : 
                                     the thesis becomes 
                                     t1:T
                                       .t2:T
                                         .subst0 (s (Bind Abst) i) v t1 t2
                                           (f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      ((lt
                                                             weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                             g (s (Bind Abst) i))
                                                           le (weight_map f t2) (weight_map g t1))
                                                f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S i) O v)) (g i)
                                                              (le
                                                                   weight_map f (THead (Bind Abst) u2 t2)
                                                                   weight_map g (THead (Bind Abst) u1 t1))))
                                         assume t1T
                                         assume t2T
                                           we must prove 
                                                 subst0 (s (Bind Abst) i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                     g (s (Bind Abst) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abst) u2 t2)
                                                                           weight_map g (THead (Bind Abst) u1 t1))))
                                           or equivalently 
                                                 subst0 (S i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                     g (s (Bind Abst) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Abst) u2 t2)
                                                                           weight_map g (THead (Bind Abst) u1 t1))))
                                           suppose subst0 (S i) v t1 t2
                                              we must prove 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                   g (s (Bind Abst) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abst) u2 t2)
                                                                         weight_map g (THead (Bind Abst) u1 t1)))
                                              or equivalently 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abst) u2 t2)
                                                                         weight_map g (THead (Bind Abst) u1 t1)))
                                               suppose H3
                                                  f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                             le (weight_map f t2) (weight_map g t1))
                                               assume fnatnat
                                               assume gnatnat
                                               suppose H4m:nat.(le (f m) (g m))
                                               suppose H5lt (weight_map f (lift (S i) O v)) (g i)
                                                 (h1
                                                    by (H1 . . H4 H5)
le (weight_map f u2) (weight_map g u1)
                                                 end of h1
                                                 (h2
                                                    (h1
                                                       assume mnat
                                                          by (le_n .)
                                                          we proved le O O
                                                          by (wadd_le . . H4 . . previous .)
                                                          we proved le (wadd f O m) (wadd g O m)
m:nat.(le (wadd f O m) (wadd g O m))
                                                    end of h1
                                                    (h2
                                                       by (lift_weight_add_O . . . .)
                                                       we proved 
                                                          eq
                                                            nat
                                                            weight_map f (lift (S i) O v)
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                       we proceed by induction on the previous result to prove lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H5
                                                       we proved lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)

                                                          lt
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                            wadd g O (S i)
                                                    end of h2
                                                    by (H3 . . h1 h2)
le (weight_map (wadd f O) t2) (weight_map (wadd g O) t1)
                                                 end of h2
                                                 by (le_plus_plus . . . . h1 h2)
                                                 we proved 
                                                    le
                                                      plus (weight_map f u2) (weight_map (wadd f O) t2)
                                                      plus (weight_map g u1) (weight_map (wadd g O) t1)
                                                 by (le_n_S . . previous)
                                                 we proved 
                                                    le
                                                      S (plus (weight_map f u2) (weight_map (wadd f O) t2))
                                                      S (plus (weight_map g u1) (weight_map (wadd g O) t1))
                                                 that is equivalent to 
                                                    le
                                                      weight_map f (THead (Bind Abst) u2 t2)
                                                      weight_map g (THead (Bind Abst) u1 t1)
                                              we proved 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind Abst) u2 t2)
                                                                      weight_map g (THead (Bind Abst) u1 t1)))
                                              that is equivalent to 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         ((lt
                                                                weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                g (s (Bind Abst) i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind Abst) u2 t2)
                                                                      weight_map g (THead (Bind Abst) u1 t1)))
                                           we proved 
                                              subst0 (S i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                  g (s (Bind Abst) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abst) u2 t2)
                                                                        weight_map g (THead (Bind Abst) u1 t1))))
                                           that is equivalent to 
                                              subst0 (s (Bind Abst) i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                  g (s (Bind Abst) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Abst) u2 t2)
                                                                        weight_map g (THead (Bind Abst) u1 t1))))

                                           t1:T
                                             .t2:T
                                               .subst0 (s (Bind Abst) i) v t1 t2
                                                 (f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Abst) i)) O v)
                                                                   g (s (Bind Abst) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Abst) u2 t2)
                                                                         weight_map g (THead (Bind Abst) u1 t1))))
                                  case Void : 
                                     the thesis becomes 
                                     t1:T
                                       .t2:T
                                         .subst0 (s (Bind Void) i) v t1 t2
                                           (f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      ((lt
                                                             weight_map f (lift (S (s (Bind Void) i)) O v)
                                                             g (s (Bind Void) i))
                                                           le (weight_map f t2) (weight_map g t1))
                                                f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S i) O v)) (g i)
                                                              (le
                                                                   weight_map f (THead (Bind Void) u2 t2)
                                                                   weight_map g (THead (Bind Void) u1 t1))))
                                         assume t1T
                                         assume t2T
                                           we must prove 
                                                 subst0 (s (Bind Void) i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                     g (s (Bind Void) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Void) u2 t2)
                                                                           weight_map g (THead (Bind Void) u1 t1))))
                                           or equivalently 
                                                 subst0 (S i) v t1 t2
                                                   (f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              ((lt
                                                                     weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                     g (s (Bind Void) i))
                                                                   le (weight_map f t2) (weight_map g t1))
                                                        f:natnat
                                                             .g:natnat
                                                               .m:nat.(le (f m) (g m))
                                                                 (lt (weight_map f (lift (S i) O v)) (g i)
                                                                      (le
                                                                           weight_map f (THead (Bind Void) u2 t2)
                                                                           weight_map g (THead (Bind Void) u1 t1))))
                                           suppose subst0 (S i) v t1 t2
                                              we must prove 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                   g (s (Bind Void) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Void) u2 t2)
                                                                         weight_map g (THead (Bind Void) u1 t1)))
                                              or equivalently 
                                                    f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Void) u2 t2)
                                                                         weight_map g (THead (Bind Void) u1 t1)))
                                               suppose H3
                                                  f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                             le (weight_map f t2) (weight_map g t1))
                                               assume fnatnat
                                               assume gnatnat
                                               suppose H4m:nat.(le (f m) (g m))
                                               suppose H5lt (weight_map f (lift (S i) O v)) (g i)
                                                 (h1
                                                    by (H1 . . H4 H5)
le (weight_map f u2) (weight_map g u1)
                                                 end of h1
                                                 (h2
                                                    (h1
                                                       assume mnat
                                                          by (le_n .)
                                                          we proved le O O
                                                          by (wadd_le . . H4 . . previous .)
                                                          we proved le (wadd f O m) (wadd g O m)
m:nat.(le (wadd f O m) (wadd g O m))
                                                    end of h1
                                                    (h2
                                                       by (lift_weight_add_O . . . .)
                                                       we proved 
                                                          eq
                                                            nat
                                                            weight_map f (lift (S i) O v)
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                       we proceed by induction on the previous result to prove lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H5
                                                       we proved lt (weight_map (wadd f O) (lift (S (S i)) O v)) (g i)

                                                          lt
                                                            weight_map (wadd f O) (lift (S (S i)) O v)
                                                            wadd g O (S i)
                                                    end of h2
                                                    by (H3 . . h1 h2)
le (weight_map (wadd f O) t2) (weight_map (wadd g O) t1)
                                                 end of h2
                                                 by (le_plus_plus . . . . h1 h2)
                                                 we proved 
                                                    le
                                                      plus (weight_map f u2) (weight_map (wadd f O) t2)
                                                      plus (weight_map g u1) (weight_map (wadd g O) t1)
                                                 by (le_n_S . . previous)
                                                 we proved 
                                                    le
                                                      S (plus (weight_map f u2) (weight_map (wadd f O) t2))
                                                      S (plus (weight_map g u1) (weight_map (wadd g O) t1))
                                                 that is equivalent to 
                                                    le
                                                      weight_map f (THead (Bind Void) u2 t2)
                                                      weight_map g (THead (Bind Void) u1 t1)
                                              we proved 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         (lt (weight_map f (lift (S (S i)) O v)) (g (S i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind Void) u2 t2)
                                                                      weight_map g (THead (Bind Void) u1 t1)))
                                              that is equivalent to 
                                                 f:natnat
                                                     .g:natnat
                                                       .m:nat.(le (f m) (g m))
                                                         ((lt
                                                                weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                g (s (Bind Void) i))
                                                              le (weight_map f t2) (weight_map g t1))
                                                   f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            (lt (weight_map f (lift (S i) O v)) (g i)
                                                                 (le
                                                                      weight_map f (THead (Bind Void) u2 t2)
                                                                      weight_map g (THead (Bind Void) u1 t1)))
                                           we proved 
                                              subst0 (S i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                  g (s (Bind Void) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Void) u2 t2)
                                                                        weight_map g (THead (Bind Void) u1 t1))))
                                           that is equivalent to 
                                              subst0 (s (Bind Void) i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           ((lt
                                                                  weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                  g (s (Bind Void) i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   (le
                                                                        weight_map f (THead (Bind Void) u2 t2)
                                                                        weight_map g (THead (Bind Void) u1 t1))))

                                           t1:T
                                             .t2:T
                                               .subst0 (s (Bind Void) i) v t1 t2
                                                 (f:natnat
                                                        .g:natnat
                                                          .m:nat.(le (f m) (g m))
                                                            ((lt
                                                                   weight_map f (lift (S (s (Bind Void) i)) O v)
                                                                   g (s (Bind Void) i))
                                                                 le (weight_map f t2) (weight_map g t1))
                                                      f:natnat
                                                           .g:natnat
                                                             .m:nat.(le (f m) (g m))
                                                               (lt (weight_map f (lift (S i) O v)) (g i)
                                                                    (le
                                                                         weight_map f (THead (Bind Void) u2 t2)
                                                                         weight_map g (THead (Bind Void) u1 t1))))

                                  t1:T
                                    .t2:T
                                      .subst0 (s (Bind b) i) v t1 t2
                                        (f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   ((lt
                                                          weight_map f (lift (S (s (Bind b) i)) O v)
                                                          g (s (Bind b) i))
                                                        le (weight_map f t2) (weight_map g t1))
                                             f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      (lt (weight_map f (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f (THead (Bind b) u2 t2)
                                                                weight_map g (THead (Bind b) u1 t1))))
                         case Flat : :F 
                            the thesis becomes 
                            t1:T
                              .t2:T
                                .subst0 (s (Flat __3) i) v t1 t2
                                  (f:natnat
                                         .g:natnat
                                           .m:nat.(le (f m) (g m))
                                             ((lt
                                                    weight_map f (lift (S (s (Flat __7) i)) O v)
                                                    g (s (Flat __7) i))
                                                  le (weight_map f t2) (weight_map g t1))
                                       f:natnat
                                            .g:natnat
                                              .m:nat.(le (f m) (g m))
                                                (lt (weight_map f (lift (S i) O v)) (g i)
                                                     (le
                                                          weight_map f (THead (Flat __9) u2 t2)
                                                          weight_map g (THead (Flat __9) u1 t1))))
                                assume t1T
                                assume t2T
                                  we must prove 
                                        subst0 (s (Flat __3) i) v t1 t2
                                          (f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     ((lt
                                                            weight_map f (lift (S (s (Flat __7) i)) O v)
                                                            g (s (Flat __7) i))
                                                          le (weight_map f t2) (weight_map g t1))
                                               f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                                             (le
                                                                  weight_map f (THead (Flat __9) u2 t2)
                                                                  weight_map g (THead (Flat __9) u1 t1))))
                                  or equivalently 
                                        subst0 i v t1 t2
                                          (f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     ((lt
                                                            weight_map f (lift (S (s (Flat __7) i)) O v)
                                                            g (s (Flat __7) i))
                                                          le (weight_map f t2) (weight_map g t1))
                                               f:natnat
                                                    .g:natnat
                                                      .m:nat.(le (f m) (g m))
                                                        (lt (weight_map f (lift (S i) O v)) (g i)
                                                             (le
                                                                  weight_map f (THead (Flat __9) u2 t2)
                                                                  weight_map g (THead (Flat __9) u1 t1))))
                                  suppose subst0 i v t1 t2
                                     we must prove 
                                           f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   ((lt
                                                          weight_map f (lift (S (s (Flat __7) i)) O v)
                                                          g (s (Flat __7) i))
                                                        le (weight_map f t2) (weight_map g t1))
                                             f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      (lt (weight_map f (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f (THead (Flat __9) u2 t2)
                                                                weight_map g (THead (Flat __9) u1 t1)))
                                     or equivalently 
                                           f0:natnat
                                               .g:natnat
                                                 .m:nat.(le (f0 m) (g m))
                                                   (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                        le (weight_map f0 t2) (weight_map g t1))
                                             f0:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f0 m) (g m))
                                                      (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f0 (THead (Flat __9) u2 t2)
                                                                weight_map g (THead (Flat __9) u1 t1)))
                                      suppose H3
                                         f0:natnat
                                           .g:natnat
                                             .m:nat.(le (f0 m) (g m))
                                               (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                    le (weight_map f0 t2) (weight_map g t1))
                                      assume f0natnat
                                      assume gnatnat
                                      suppose H4m:nat.(le (f0 m) (g m))
                                      suppose H5lt (weight_map f0 (lift (S i) O v)) (g i)
                                        (h1
                                           by (H1 . . H4 H5)
le (weight_map f0 u2) (weight_map g u1)
                                        end of h1
                                        (h2
                                           by (H3 . . H4 H5)
le (weight_map f0 t2) (weight_map g t1)
                                        end of h2
                                        by (le_plus_plus . . . . h1 h2)
                                        we proved 
                                           le
                                             plus (weight_map f0 u2) (weight_map f0 t2)
                                             plus (weight_map g u1) (weight_map g t1)
                                        by (le_n_S . . previous)
                                        we proved 
                                           le
                                             S (plus (weight_map f0 u2) (weight_map f0 t2))
                                             S (plus (weight_map g u1) (weight_map g t1))
                                        that is equivalent to 
                                           le
                                             weight_map f0 (THead (Flat __9) u2 t2)
                                             weight_map g (THead (Flat __9) u1 t1)
                                     we proved 
                                        f0:natnat
                                            .g:natnat
                                              .m:nat.(le (f0 m) (g m))
                                                (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                     le (weight_map f0 t2) (weight_map g t1))
                                          f0:natnat
                                               .g:natnat
                                                 .m:nat.(le (f0 m) (g m))
                                                   (lt (weight_map f0 (lift (S i) O v)) (g i)
                                                        (le
                                                             weight_map f0 (THead (Flat __9) u2 t2)
                                                             weight_map g (THead (Flat __9) u1 t1)))
                                     that is equivalent to 
                                        f:natnat
                                            .g:natnat
                                              .m:nat.(le (f m) (g m))
                                                ((lt
                                                       weight_map f (lift (S (s (Flat __7) i)) O v)
                                                       g (s (Flat __7) i))
                                                     le (weight_map f t2) (weight_map g t1))
                                          f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   (lt (weight_map f (lift (S i) O v)) (g i)
                                                        (le
                                                             weight_map f (THead (Flat __9) u2 t2)
                                                             weight_map g (THead (Flat __9) u1 t1)))
                                  we proved 
                                     subst0 i v t1 t2
                                       (f:natnat
                                              .g:natnat
                                                .m:nat.(le (f m) (g m))
                                                  ((lt
                                                         weight_map f (lift (S (s (Flat __7) i)) O v)
                                                         g (s (Flat __7) i))
                                                       le (weight_map f t2) (weight_map g t1))
                                            f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                                          (le
                                                               weight_map f (THead (Flat __9) u2 t2)
                                                               weight_map g (THead (Flat __9) u1 t1))))
                                  that is equivalent to 
                                     subst0 (s (Flat __3) i) v t1 t2
                                       (f:natnat
                                              .g:natnat
                                                .m:nat.(le (f m) (g m))
                                                  ((lt
                                                         weight_map f (lift (S (s (Flat __7) i)) O v)
                                                         g (s (Flat __7) i))
                                                       le (weight_map f t2) (weight_map g t1))
                                            f:natnat
                                                 .g:natnat
                                                   .m:nat.(le (f m) (g m))
                                                     (lt (weight_map f (lift (S i) O v)) (g i)
                                                          (le
                                                               weight_map f (THead (Flat __9) u2 t2)
                                                               weight_map g (THead (Flat __9) u1 t1))))

                                  t1:T
                                    .t2:T
                                      .subst0 (s (Flat __3) i) v t1 t2
                                        (f:natnat
                                               .g:natnat
                                                 .m:nat.(le (f m) (g m))
                                                   ((lt
                                                          weight_map f (lift (S (s (Flat __7) i)) O v)
                                                          g (s (Flat __7) i))
                                                        le (weight_map f t2) (weight_map g t1))
                                             f:natnat
                                                  .g:natnat
                                                    .m:nat.(le (f m) (g m))
                                                      (lt (weight_map f (lift (S i) O v)) (g i)
                                                           (le
                                                                weight_map f (THead (Flat __9) u2 t2)
                                                                weight_map g (THead (Flat __9) u1 t1))))
                      we proved 
                         t1:T
                           .t2:T
                             .subst0 (s k i) v t1 t2
                               (f:natnat
                                      .g:natnat
                                        .m:nat.(le (f m) (g m))
                                          (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                               le (weight_map f t2) (weight_map g t1))
                                    f:natnat
                                         .g:natnat
                                           .m:nat.(le (f m) (g m))
                                             (lt (weight_map f (lift (S i) O v)) (g i)
                                                  le (weight_map f (THead k u2 t2)) (weight_map g (THead k u1 t1))))

                      v:T
                        .u1:T
                          .u2:T
                            .i:nat
                              .subst0 i v u1 u2
                                (f:natnat
                                       .g:natnat
                                         .m:nat.(le (f m) (g m))
                                           (lt (weight_map f (lift (S i) O v)) (g i)
                                                le (weight_map f u2) (weight_map g u1))
                                     k:K
                                          .t1:T
                                            .t2:T
                                              .subst0 (s k i) v t1 t2
                                                (f:natnat
                                                       .g:natnat
                                                         .m:nat.(le (f m) (g m))
                                                           (lt (weight_map f (lift (S (s k i)) O v)) (g (s k i))
                                                                le (weight_map f t2) (weight_map g t1))
                                                     f:natnat
                                                          .g:natnat
                                                            .m:nat.(le (f m) (g m))
                                                              (lt (weight_map f (lift (S i) O v)) (g i)
                                                                   le (weight_map f (THead k u2 t2)) (weight_map g (THead k u1 t1)))))
          we proved 
             f:natnat
               .g:natnat
                 .m:nat.(le (f m) (g m))
                   (lt (weight_map f (lift (S d) O u)) (g d)
                        le (weight_map f z) (weight_map g t))
       we proved 
          u:T
            .t:T
              .z:T
                .d:nat
                  .subst0 d u t z
                    f:natnat
                         .g:natnat
                           .m:nat.(le (f m) (g m))
                             (lt (weight_map f (lift (S d) O u)) (g d)
                                  le (weight_map f z) (weight_map g t))