DEFINITION subst0_lift_ge_s()
TYPE =
∀t1:T
.∀t2:T
.∀u:T
.∀i:nat
.subst0 i u t1 t2
→∀d:nat
.le d i
→∀b:B.(subst0 (s (Bind b) i) u (lift (S O) d t1) (lift (S O) d t2))
BODY =
assume t1: T
assume t2: T
assume u: T
assume i: nat
suppose H: subst0 i u t1 t2
assume d: nat
suppose H0: le d i
assume : B
by (subst0_lift_ge_S . . . . H . H0)
we proved subst0 (S i) u (lift (S O) d t1) (lift (S O) d t2)
that is equivalent to subst0 (s (Bind __1) i) u (lift (S O) d t1) (lift (S O) d t2)
we proved
∀t1:T
.∀t2:T
.∀u:T
.∀i:nat
.subst0 i u t1 t2
→∀d:nat
.le d i
→B→(subst0 (s (Bind __1) i) u (lift (S O) d t1) (lift (S O) d t2))