DEFINITION subst0_gen_sort()
TYPE =
       v:T.x:T.i:nat.n:nat.(subst0 i v (TSort n) x)P:Prop.P
BODY =
        assume vT
        assume xT
        assume inat
        assume nnat
        suppose Hsubst0 i v (TSort n) x
        assume PProp
           assume yT
           suppose H0subst0 i v y x
             we proceed by induction on H0 to prove (eq T y (TSort n))P
                case subst0_lref : :T i0:nat 
                   the thesis becomes H1:(eq T (TLRef i0) (TSort n)).P
                      suppose H1eq T (TLRef i0) (TSort n)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef i0 OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef i0 OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H2
                         consider H2
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove P
                         we proved P
H1:(eq T (TLRef i0) (TSort n)).P
                case subst0_fst : v0:T u2:T u1:T i0:nat :subst0 i0 v0 u1 u2 t:T k:K 
                   the thesis becomes H3:(eq T (THead k u1 t) (TSort n)).P
                   () by induction hypothesis we know (eq T u1 (TSort n))P
                      suppose H3eq T (THead k u1 t) (TSort n)
                         (H4
                            we proceed by induction on H3 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead k u1 t OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead k u1 t OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H4
                         consider H4
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove P
                         we proved P
H3:(eq T (THead k u1 t) (TSort n)).P
                case subst0_snd : k:K v0:T t2:T t1:T i0:nat :subst0 (s k i0) v0 t1 t2 u:T 
                   the thesis becomes H3:(eq T (THead k u t1) (TSort n)).P
                   () by induction hypothesis we know (eq T t1 (TSort n))P
                      suppose H3eq T (THead k u t1) (TSort n)
                         (H4
                            we proceed by induction on H3 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead k u t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead k u t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H4
                         consider H4
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove P
                         we proved P
H3:(eq T (THead k u t1) (TSort n)).P
                case subst0_both : v0:T u1:T u2:T i0:nat :subst0 i0 v0 u1 u2 k:K t1:T t2:T :subst0 (s k i0) v0 t1 t2 
                   the thesis becomes H5:(eq T (THead k u1 t1) (TSort n)).P
                   () by induction hypothesis we know (eq T u1 (TSort n))P
                   () by induction hypothesis we know (eq T t1 (TSort n))P
                      suppose H5eq T (THead k u1 t1) (TSort n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead k u1 t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead k u1 t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove P
                         we proved P
H5:(eq T (THead k u1 t1) (TSort n)).P
             we proved (eq T y (TSort n))P
          we proved y:T.(subst0 i v y x)(eq T y (TSort n))P
          by (insert_eq . . . . previous H)
          we proved P
       we proved v:T.x:T.i:nat.n:nat.(subst0 i v (TSort n) x)P:Prop.P