DEFINITION sty1_ind()
TYPE =
∀g:G
.∀c:C
.∀t1:T
.∀P:T→Prop
.∀t:T.(sty0 g c t1 t)→(P t)
→(∀t:T.(sty1 g c t1 t)→(P t)→∀t2:T.(sty0 g c t t2)→(P t2)
→∀t:T.(sty1 g c t1 t)→(P t))
BODY =
assume g: G
assume c: C
assume t1: T
assume P: T→Prop
suppose H: ∀t:T.(sty0 g c t1 t)→(P t)
suppose H1: ∀t:T.(sty1 g c t1 t)→(P t)→∀t2:T.(sty0 g c t t2)→(P t2)
(aux) by well-founded reasoning we prove ∀t:T.(sty1 g c t1 t)→(P t)
assume t: T
suppose H2: sty1 g c t1 t
by cases on H2 we prove P t
case sty1_sty0 t2:T H3:sty0 g c t1 t2 ⇒
the thesis becomes P t2
by (H . H3)
P t2
case sty1_sing t2:T H3:sty1 g c t1 t2 t3:T H4:sty0 g c t2 t3 ⇒
the thesis becomes P t3
by (aux . H3)
we proved P t2
by (H1 . H3 previous . H4)
P t3
we proved P t
∀t:T.(sty1 g c t1 t)→(P t)
done
consider aux
we proved ∀t:T.(sty1 g c t1 t)→(P t)
we proved
∀g:G
.∀c:C
.∀t1:T
.∀P:T→Prop
.∀t:T.(sty0 g c t1 t)→(P t)
→(∀t:T.(sty1 g c t1 t)→(P t)→∀t2:T.(sty0 g c t t2)→(P t2)
→∀t:T.(sty1 g c t1 t)→(P t))