DEFINITION sty1_ind()
TYPE =
       g:G
         .c:C
           .t1:T
             .P:TProp
               .t:T.(sty0 g c t1 t)(P t)
                 (t:T.(sty1 g c t1 t)(P t)t2:T.(sty0 g c t t2)(P t2)
                      t:T.(sty1 g c t1 t)(P t))
BODY =
        assume gG
        assume cC
        assume t1T
        assume PTProp
        suppose Ht:T.(sty0 g c t1 t)(P t)
        suppose H1t:T.(sty1 g c t1 t)(P t)t2:T.(sty0 g c t t2)(P t2)
          (aux) by well-founded reasoning we prove t:T.(sty1 g c t1 t)(P t)
           assume tT
           suppose H2sty1 g c t1 t
             by cases on H2 we prove P t
                case sty1_sty0 t2:T H3:sty0 g c t1 t2 
                   the thesis becomes P t2
                   by (H . H3)
P t2
                case sty1_sing t2:T H3:sty1 g c t1 t2 t3:T H4:sty0 g c t2 t3 
                   the thesis becomes P t3
                   by (aux . H3)
                   we proved P t2
                   by (H1 . H3 previous . H4)
P t3
             we proved P t
t:T.(sty1 g c t1 t)(P t)
          done
          consider aux
          we proved t:T.(sty1 g c t1 t)(P t)
       we proved 
          g:G
            .c:C
              .t1:T
                .P:TProp
                  .t:T.(sty0 g c t1 t)(P t)
                    (t:T.(sty1 g c t1 t)(P t)t2:T.(sty0 g c t t2)(P t2)
                         t:T.(sty1 g c t1 t)(P t))