DEFINITION sty0_gen_sort()
TYPE =
       g:G.c:C.x:T.n:nat.(sty0 g c (TSort n) x)(eq T x (TSort (next g n)))
BODY =
        assume gG
        assume cC
        assume xT
        assume nnat
        suppose Hsty0 g c (TSort n) x
           assume yT
           suppose H0sty0 g c y x
             we proceed by induction on H0 to prove (eq T y (TSort n))(eq T x (TSort (next g n)))
                case sty0_sort : :C n0:nat 
                   the thesis becomes 
                   H1:eq T (TSort n0) (TSort n)
                     .eq T (TSort (next g n0)) (TSort (next g n))
                      suppose H1eq T (TSort n0) (TSort n)
                         (H2
                            by (f_equal . . . . . H1)
                            we proved 
                               eq
                                 nat
                                 <λ:T.nat> CASE TSort n0 OF TSort n1n1 | TLRef n0 | THead   n0
                                 <λ:T.nat> CASE TSort n OF TSort n1n1 | TLRef n0 | THead   n0

                               eq
                                 nat
                                 λe:T.<λ:T.nat> CASE e OF TSort n1n1 | TLRef n0 | THead   n0 (TSort n0)
                                 λe:T.<λ:T.nat> CASE e OF TSort n1n1 | TLRef n0 | THead   n0 (TSort n)
                         end of H2
                         (h1
                            by (refl_equal . .)
eq T (TSort (next g n)) (TSort (next g n))
                         end of h1
                         (h2
                            consider H2
                            we proved 
                               eq
                                 nat
                                 <λ:T.nat> CASE TSort n0 OF TSort n1n1 | TLRef n0 | THead   n0
                                 <λ:T.nat> CASE TSort n OF TSort n1n1 | TLRef n0 | THead   n0
eq nat n0 n
                         end of h2
                         by (eq_ind_r . . . h1 . h2)
                         we proved eq T (TSort (next g n0)) (TSort (next g n))

                         H1:eq T (TSort n0) (TSort n)
                           .eq T (TSort (next g n0)) (TSort (next g n))
                case sty0_abbr : c0:C d:C v:T i:nat :getl i c0 (CHead d (Bind Abbr) v) w:T :sty0 g d v w 
                   the thesis becomes 
                   H4:eq T (TLRef i) (TSort n)
                     .eq T (lift (S i) O w) (TSort (next g n))
                   () by induction hypothesis we know (eq T v (TSort n))(eq T w (TSort (next g n)))
                      suppose H4eq T (TLRef i) (TSort n)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef i OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef i OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (lift (S i) O w) (TSort (next g n))
                         we proved eq T (lift (S i) O w) (TSort (next g n))

                         H4:eq T (TLRef i) (TSort n)
                           .eq T (lift (S i) O w) (TSort (next g n))
                case sty0_abst : c0:C d:C v:T i:nat :getl i c0 (CHead d (Bind Abst) v) w:T :sty0 g d v w 
                   the thesis becomes 
                   H4:eq T (TLRef i) (TSort n)
                     .eq T (lift (S i) O v) (TSort (next g n))
                   () by induction hypothesis we know (eq T v (TSort n))(eq T w (TSort (next g n)))
                      suppose H4eq T (TLRef i) (TSort n)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TLRef i OF
                                      TSort False
                                    | TLRef True
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TLRef i OF
                                            TSort False
                                          | TLRef True
                                          | THead   False

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef True
                                 | THead   False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef True
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (lift (S i) O v) (TSort (next g n))
                         we proved eq T (lift (S i) O v) (TSort (next g n))

                         H4:eq T (TLRef i) (TSort n)
                           .eq T (lift (S i) O v) (TSort (next g n))
                case sty0_bind : b:B c0:C v:T t1:T t2:T :sty0 g (CHead c0 (Bind b) v) t1 t2 
                   the thesis becomes 
                   H3:eq T (THead (Bind b) v t1) (TSort n)
                     .eq T (THead (Bind b) v t2) (TSort (next g n))
                   () by induction hypothesis we know (eq T t1 (TSort n))(eq T t2 (TSort (next g n)))
                      suppose H3eq T (THead (Bind b) v t1) (TSort n)
                         (H4
                            we proceed by induction on H3 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind b) v t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) v t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H4
                         consider H4
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (THead (Bind b) v t2) (TSort (next g n))
                         we proved eq T (THead (Bind b) v t2) (TSort (next g n))

                         H3:eq T (THead (Bind b) v t1) (TSort n)
                           .eq T (THead (Bind b) v t2) (TSort (next g n))
                case sty0_appl : c0:C v:T t1:T t2:T :sty0 g c0 t1 t2 
                   the thesis becomes 
                   H3:eq T (THead (Flat Appl) v t1) (TSort n)
                     .eq T (THead (Flat Appl) v t2) (TSort (next g n))
                   () by induction hypothesis we know (eq T t1 (TSort n))(eq T t2 (TSort (next g n)))
                      suppose H3eq T (THead (Flat Appl) v t1) (TSort n)
                         (H4
                            we proceed by induction on H3 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Appl) v t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) v t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H4
                         consider H4
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (THead (Flat Appl) v t2) (TSort (next g n))
                         we proved eq T (THead (Flat Appl) v t2) (TSort (next g n))

                         H3:eq T (THead (Flat Appl) v t1) (TSort n)
                           .eq T (THead (Flat Appl) v t2) (TSort (next g n))
                case sty0_cast : c0:C v1:T v2:T :sty0 g c0 v1 v2 t1:T t2:T :sty0 g c0 t1 t2 
                   the thesis becomes 
                   H5:eq T (THead (Flat Cast) v1 t1) (TSort n)
                     .eq T (THead (Flat Cast) v2 t2) (TSort (next g n))
                   () by induction hypothesis we know (eq T v1 (TSort n))(eq T v2 (TSort (next g n)))
                   () by induction hypothesis we know (eq T t1 (TSort n))(eq T t2 (TSort (next g n)))
                      suppose H5eq T (THead (Flat Cast) v1 t1) (TSort n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Cast) v1 t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) v1 t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TSort n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TSort n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (THead (Flat Cast) v2 t2) (TSort (next g n))
                         we proved eq T (THead (Flat Cast) v2 t2) (TSort (next g n))

                         H5:eq T (THead (Flat Cast) v1 t1) (TSort n)
                           .eq T (THead (Flat Cast) v2 t2) (TSort (next g n))
             we proved (eq T y (TSort n))(eq T x (TSort (next g n)))
          we proved 
             y:T
               .sty0 g c y x
                 (eq T y (TSort n))(eq T x (TSort (next g n)))
          by (insert_eq . . . . previous H)
          we proved eq T x (TSort (next g n))
       we proved g:G.c:C.x:T.n:nat.(sty0 g c (TSort n) x)(eq T x (TSort (next g n)))