DEFINITION sty0_ind()
TYPE =
∀g:G
.∀P:C→T→T→Prop
.∀c:C.∀n:nat.(P c (TSort n) (TSort (next g n)))
→(∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abbr) t)
→∀t1:T.(sty0 g c1 t t1)→(P c1 t t1)→(P c (TLRef n) (lift (S n) O t1))
→(∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abst) t)
→∀t1:T.(sty0 g c1 t t1)→(P c1 t t1)→(P c (TLRef n) (lift (S n) O t))
→(∀b:B
.∀c:C
.∀t:T
.∀t1:T
.∀t2:T
.sty0 g (CHead c (Bind b) t) t1 t2
→(P (CHead c (Bind b) t) t1 t2
→P c (THead (Bind b) t t1) (THead (Bind b) t t2))
→(∀c:C
.∀t:T
.∀t1:T
.∀t2:T
.sty0 g c t1 t2
→(P c t1 t2)→(P c (THead (Flat Appl) t t1) (THead (Flat Appl) t t2))
→(∀c:C
.∀t:T
.∀t1:T
.sty0 g c t t1
→(P c t t1
→∀t2:T
.∀t3:T
.sty0 g c t2 t3
→(P c t2 t3)→(P c (THead (Flat Cast) t t2) (THead (Flat Cast) t1 t3)))
→∀c:C.∀t:T.∀t1:T.(sty0 g c t t1)→(P c t t1))))))
BODY =
assume g: G
assume P: C→T→T→Prop
suppose H: ∀c:C.∀n:nat.(P c (TSort n) (TSort (next g n)))
suppose H1:
∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abbr) t)
→∀t1:T.(sty0 g c1 t t1)→(P c1 t t1)→(P c (TLRef n) (lift (S n) O t1))
suppose H2:
∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abst) t)
→∀t1:T.(sty0 g c1 t t1)→(P c1 t t1)→(P c (TLRef n) (lift (S n) O t))
suppose H3:
∀b:B
.∀c:C
.∀t:T
.∀t1:T
.∀t2:T
.sty0 g (CHead c (Bind b) t) t1 t2
→(P (CHead c (Bind b) t) t1 t2
→P c (THead (Bind b) t t1) (THead (Bind b) t t2))
suppose H4:
∀c:C
.∀t:T
.∀t1:T
.∀t2:T
.sty0 g c t1 t2
→(P c t1 t2)→(P c (THead (Flat Appl) t t1) (THead (Flat Appl) t t2))
suppose H5:
∀c:C
.∀t:T
.∀t1:T
.sty0 g c t t1
→(P c t t1
→∀t2:T
.∀t3:T
.sty0 g c t2 t3
→(P c t2 t3)→(P c (THead (Flat Cast) t t2) (THead (Flat Cast) t1 t3)))
(aux) by well-founded reasoning we prove ∀c:C.∀t:T.∀t1:T.(sty0 g c t t1)→(P c t t1)
assume c: C
assume t: T
assume t1: T
suppose H6: sty0 g c t t1
by cases on H6 we prove P c t t1
case sty0_sort c1:C n:nat ⇒
the thesis becomes P c1 (TSort n) (TSort (next g n))
by (H . .)
P c1 (TSort n) (TSort (next g n))
case sty0_abbr c1:C c2:C t2:T n:nat H7:getl n c1 (CHead c2 (Bind Abbr) t2) t3:T H8:sty0 g c2 t2 t3 ⇒
the thesis becomes P c1 (TLRef n) (lift (S n) O t3)
by (aux . . . H8)
we proved P c2 t2 t3
by (H1 . . . . H7 . H8 previous)
P c1 (TLRef n) (lift (S n) O t3)
case sty0_abst c1:C c2:C t2:T n:nat H7:getl n c1 (CHead c2 (Bind Abst) t2) t3:T H8:sty0 g c2 t2 t3 ⇒
the thesis becomes P c1 (TLRef n) (lift (S n) O t2)
by (aux . . . H8)
we proved P c2 t2 t3
by (H2 . . . . H7 . H8 previous)
P c1 (TLRef n) (lift (S n) O t2)
case sty0_bind b:B c1:C t2:T t3:T t4:T H7:sty0 g (CHead c1 (Bind b) t2) t3 t4 ⇒
the thesis becomes P c1 (THead (Bind b) t2 t3) (THead (Bind b) t2 t4)
by (aux . . . H7)
we proved P (CHead c1 (Bind b) t2) t3 t4
by (H3 . . . . . H7 previous)
P c1 (THead (Bind b) t2 t3) (THead (Bind b) t2 t4)
case sty0_appl c1:C t2:T t3:T t4:T H7:sty0 g c1 t3 t4 ⇒
the thesis becomes P c1 (THead (Flat Appl) t2 t3) (THead (Flat Appl) t2 t4)
by (aux . . . H7)
we proved P c1 t3 t4
by (H4 . . . . H7 previous)
P c1 (THead (Flat Appl) t2 t3) (THead (Flat Appl) t2 t4)
case sty0_cast c1:C t2:T t3:T H7:sty0 g c1 t2 t3 t4:T t5:T H8:sty0 g c1 t4 t5 ⇒
the thesis becomes P c1 (THead (Flat Cast) t2 t4) (THead (Flat Cast) t3 t5)
(h1) by (aux . . . H7) we proved P c1 t2 t3
(h2) by (aux . . . H8) we proved P c1 t4 t5
by (H5 . . . H7 h1 . . H8 h2)
P c1 (THead (Flat Cast) t2 t4) (THead (Flat Cast) t3 t5)
we proved P c t t1
∀c:C.∀t:T.∀t1:T.(sty0 g c t t1)→(P c t t1)
done
consider aux
we proved ∀c:C.∀t:T.∀t1:T.(sty0 g c t t1)→(P c t t1)
we proved
∀g:G
.∀P:C→T→T→Prop
.∀c:C.∀n:nat.(P c (TSort n) (TSort (next g n)))
→(∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abbr) t)
→∀t1:T.(sty0 g c1 t t1)→(P c1 t t1)→(P c (TLRef n) (lift (S n) O t1))
→(∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abst) t)
→∀t1:T.(sty0 g c1 t t1)→(P c1 t t1)→(P c (TLRef n) (lift (S n) O t))
→(∀b:B
.∀c:C
.∀t:T
.∀t1:T
.∀t2:T
.sty0 g (CHead c (Bind b) t) t1 t2
→(P (CHead c (Bind b) t) t1 t2
→P c (THead (Bind b) t t1) (THead (Bind b) t t2))
→(∀c:C
.∀t:T
.∀t1:T
.∀t2:T
.sty0 g c t1 t2
→(P c t1 t2)→(P c (THead (Flat Appl) t t1) (THead (Flat Appl) t t2))
→(∀c:C
.∀t:T
.∀t1:T
.sty0 g c t t1
→(P c t t1
→∀t2:T
.∀t3:T
.sty0 g c t2 t3
→(P c t2 t3)→(P c (THead (Flat Cast) t t2) (THead (Flat Cast) t1 t3)))
→∀c:C.∀t:T.∀t1:T.(sty0 g c t t1)→(P c t t1))))))