DEFINITION sn3_pr2_intro()
TYPE =
       c:C.t1:T.(t2:T.((eq T t1 t2)P:Prop.P)(pr2 c t1 t2)(sn3 c t2))(sn3 c t1)
BODY =
        assume cC
        assume t1T
        suppose Ht2:T.((eq T t1 t2)P:Prop.P)(pr2 c t1 t2)(sn3 c t2)
           assume t2T
           suppose H0(eq T t1 t2)P:Prop.P
           suppose H1pr3 c t1 t2
             (H2consider H0
             (H3consider H
                assume tT
                 suppose H4t3:T.((eq T t t3)P:Prop.P)(pr2 c t t3)(sn3 c t3)
                 suppose H5(eq T t t)P:Prop.P
                   by (pr0_refl .)
                   we proved pr0 t t
                   by (pr2_free . . . previous)
                   we proved pr2 c t t
                   by (H4 . H5 previous)
                   we proved sn3 c t

                   H4:t3:T.((eq T t t3)P:Prop.P)(pr2 c t t3)(sn3 c t3)
                     .H5:(eq T t t)P:Prop.P.(sn3 c t)
              assume t3T
              assume t4T
              suppose H4pr2 c t4 t3
              assume t5T
              suppose H5pr3 c t3 t5
                 suppose H6
                    t6:T.((eq T t3 t6)P:Prop.P)(pr2 c t3 t6)(sn3 c t6)
                      ((eq T t3 t5)P:Prop.P)(sn3 c t5)
                 suppose H7t6:T.((eq T t4 t6)P:Prop.P)(pr2 c t4 t6)(sn3 c t6)
                 suppose H8(eq T t4 t5)P:Prop.P
                   (H_x
                      by (term_dec . .)
or (eq T t4 t3) (eq T t4 t3)P:Prop.P
                   end of H_x
                   (H9consider H_x
                   we proceed by induction on H9 to prove sn3 c t5
                      case or_introl : H10:eq T t4 t3 
                         the thesis becomes sn3 c t5
                            (H11
                               we proceed by induction on H10 to prove (eq T t3 t5)P:Prop.P
                                  case refl_equal : 
                                     the thesis becomes the hypothesis H8
(eq T t3 t5)P:Prop.P
                            end of H11
                            (H12
                               we proceed by induction on H10 to prove t6:T.((eq T t3 t6)P:Prop.P)(pr2 c t3 t6)(sn3 c t6)
                                  case refl_equal : 
                                     the thesis becomes the hypothesis H7
t6:T.((eq T t3 t6)P:Prop.P)(pr2 c t3 t6)(sn3 c t6)
                            end of H12
                            by (H6 H12 H11)
sn3 c t5
                      case or_intror : H10:(eq T t4 t3)P:Prop.P 
                         the thesis becomes sn3 c t5
                            by (H7 . H10 H4)
                            we proved sn3 c t3
                            by (sn3_pr3_trans . . previous . H5)
sn3 c t5
                   we proved sn3 c t5

                   H7:t6:T.((eq T t4 t6)P:Prop.P)(pr2 c t4 t6)(sn3 c t6)
                     .H8:(eq T t4 t5)P:Prop.P.(sn3 c t5)
             by (previous H1 H3)
             we proved ((eq T t1 t2)P:Prop.P)(sn3 c t2)
             by (previous H2)
             we proved sn3 c t2
          we proved t2:T.((eq T t1 t2)P:Prop.P)(pr3 c t1 t2)(sn3 c t2)
          by (sn3_sing . . previous)
          we proved sn3 c t1
       we proved c:C.t1:T.(t2:T.((eq T t1 t2)P:Prop.P)(pr2 c t1 t2)(sn3 c t2))(sn3 c t1)