DEFINITION sn3_appl_beta()
TYPE =
∀c:C
.∀u:T
.∀v:T
.∀t:T
.sn3 c (THead (Flat Appl) u (THead (Bind Abbr) v t))
→∀w:T
.sn3 c w
→(sn3
c
THead
Flat Appl
u
THead (Flat Appl) v (THead (Bind Abst) w t))
BODY =
assume c: C
assume u: T
assume v: T
assume t: T
suppose H: sn3 c (THead (Flat Appl) u (THead (Bind Abbr) v t))
assume w: T
suppose H0: sn3 c w
(H_x)
by (sn3_gen_flat . . . . H)
land (sn3 c u) (sn3 c (THead (Bind Abbr) v t))
end of H_x
(H1) consider H_x
we proceed by induction on H1 to prove
sn3
c
THead
Flat Appl
u
THead (Flat Appl) v (THead (Bind Abst) w t)
case conj : H2:sn3 c u H3:sn3 c (THead (Bind Abbr) v t) ⇒
the thesis becomes
sn3
c
THead
Flat Appl
u
THead (Flat Appl) v (THead (Bind Abst) w t)
(h1)
by (sn3_beta . . . H3 . H0)
sn3 c (THead (Flat Appl) v (THead (Bind Abst) w t))
end of h1
(h2)
assume u2: T
suppose H4: pr3 c (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
suppose H5:
iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
→∀P:Prop.P
by (pr3_iso_beta . . . . . H4 H5)
we proved pr3 c (THead (Bind Abbr) v t) u2
by (pr3_thin_dx . . . previous . .)
we proved
pr3
c
THead (Flat Appl) u (THead (Bind Abbr) v t)
THead (Flat Appl) u u2
by (sn3_pr3_trans . . H . previous)
we proved sn3 c (THead (Flat Appl) u u2)
∀u2:T
.pr3 c (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
→(iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
→∀P:Prop.P
→sn3 c (THead (Flat Appl) u u2))
end of h2
by (sn3_appl_appl . . . h1 . H2 h2)
sn3
c
THead
Flat Appl
u
THead (Flat Appl) v (THead (Bind Abst) w t)
we proved
sn3
c
THead
Flat Appl
u
THead (Flat Appl) v (THead (Bind Abst) w t)
we proved
∀c:C
.∀u:T
.∀v:T
.∀t:T
.sn3 c (THead (Flat Appl) u (THead (Bind Abbr) v t))
→∀w:T
.sn3 c w
→(sn3
c
THead
Flat Appl
u
THead (Flat Appl) v (THead (Bind Abst) w t))