DEFINITION sn3_gen_cflat()
TYPE =
∀f:F.∀c:C.∀u:T.∀t:T.(sn3 (CHead c (Flat f) u) t)→(sn3 c t)
BODY =
assume f: F
assume c: C
assume u: T
assume t: T
suppose H: sn3 (CHead c (Flat f) u) t
we proceed by induction on H to prove sn3 c t
case sn3_sing : t1:T :∀t2:T.((eq T t1 t2)→∀P:Prop.P)→(pr3 (CHead c (Flat f) u) t1 t2)→(sn3 (CHead c (Flat f) u) t2) ⇒
the thesis becomes sn3 c t1
(H1) by induction hypothesis we know ∀t2:T.((eq T t1 t2)→∀P:Prop.P)→(pr3 (CHead c (Flat f) u) t1 t2)→(sn3 c t2)
assume t2: T
suppose H2: (eq T t1 t2)→∀P:Prop.P
suppose H3: pr3 c t1 t2
by (pr3_cflat . . . H3 . .)
we proved pr3 (CHead c (Flat f) u) t1 t2
by (H1 . H2 previous)
we proved sn3 c t2
we proved ∀t2:T.((eq T t1 t2)→∀P:Prop.P)→(pr3 c t1 t2)→(sn3 c t2)
by (sn3_sing . . previous)
sn3 c t1
we proved sn3 c t
we proved ∀f:F.∀c:C.∀u:T.∀t:T.(sn3 (CHead c (Flat f) u) t)→(sn3 c t)