DEFINITION sn3_ind()
TYPE =
∀c:C
.∀P:T→Prop
.∀t:T
.∀t2:T.((eq T t t2)→∀P:Prop.P)→(pr3 c t t2)→(sn3 c t2)
→(∀t1:T.((eq T t t1)→∀P:Prop.P)→(pr3 c t t1)→(P t1))→(P t)
→∀t:T.(sn3 c t)→(P t)
BODY =
assume c: C
assume P: T→Prop
suppose H:
∀t:T
.∀t2:T.((eq T t t2)→∀P:Prop.P)→(pr3 c t t2)→(sn3 c t2)
→(∀t1:T.((eq T t t1)→∀P:Prop.P)→(pr3 c t t1)→(P t1))→(P t)
(aux) by well-founded reasoning we prove ∀t:T.(sn3 c t)→(P t)
assume t: T
suppose H1: sn3 c t
by cases on H1 we prove P t
case sn3_sing t1:T H2:∀t2:T.((eq T t1 t2)→∀P:Prop.P)→(pr3 c t1 t2)→(sn3 c t2) ⇒
the thesis becomes P t1
assume t2: T
suppose H3: (eq T t1 t2)→∀P:Prop.P
suppose H4: pr3 c t1 t2
by (H2 . H3 H4)
we proved sn3 c t2
by (aux . previous)
we proved P t2
we proved ∀t2:T.((eq T t1 t2)→∀P:Prop.P)→(pr3 c t1 t2)→(P t2)
by (H . H2 previous)
P t1
we proved P t
∀t:T.(sn3 c t)→(P t)
done
consider aux
we proved ∀t:T.(sn3 c t)→(P t)
we proved
∀c:C
.∀P:T→Prop
.∀t:T
.∀t2:T.((eq T t t2)→∀P:Prop.P)→(pr3 c t t2)→(sn3 c t2)
→(∀t1:T.((eq T t t1)→∀P:Prop.P)→(pr3 c t t1)→(P t1))→(P t)
→∀t:T.(sn3 c t)→(P t)