DEFINITION sc3_appl()
TYPE =
       g:G
         .a1:A
           .a2:A
             .vs:TList
               .c:C
                 .v:T
                   .t:T
                     .sc3 g a2 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                       (sc3 g a1 c v
                            w:T
                                 .sc3 g (asucc g a1) c w
                                   (sc3
                                        g
                                        a2
                                        c
                                        THeads
                                          Flat Appl
                                          vs
                                          THead (Flat Appl) v (THead (Bind Abst) w t)))
BODY =
        assume gG
        assume a1A
        assume a2A
          we proceed by induction on a2 to prove 
             vs:TList
               .c:C
                 .v:T
                   .t:T
                     .sc3 g a2 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                       (sc3 g a1 c v
                            w:T
                                 .sc3 g (asucc g a1) c w
                                   (sc3
                                        g
                                        a2
                                        c
                                        THeads
                                          Flat Appl
                                          vs
                                          THead (Flat Appl) v (THead (Bind Abst) w t)))
             case ASort : n:nat n0:nat 
                the thesis becomes 
                vs:TList
                  .c:C
                    .v:T
                      .t:T
                        .(sc3
                            g
                            ASort n n0
                            c
                            THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                          (sc3 g a1 c v
                               w:T
                                    .sc3 g (asucc g a1) c w
                                      (sc3
                                           g
                                           ASort n n0
                                           c
                                           THeads
                                             Flat Appl
                                             vs
                                             THead (Flat Appl) v (THead (Bind Abst) w t)))
                    assume vsTList
                    assume cC
                    assume vT
                    assume tT
                      we must prove 
                            (sc3
                                g
                                ASort n n0
                                c
                                THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                              (sc3 g a1 c v
                                   w:T
                                        .sc3 g (asucc g a1) c w
                                          (sc3
                                               g
                                               ASort n n0
                                               c
                                               THeads
                                                 Flat Appl
                                                 vs
                                                 THead (Flat Appl) v (THead (Bind Abst) w t)))
                      or equivalently 
                            (land
                                arity
                                  g
                                  c
                                  THeads (Flat Appl) vs (THead (Bind Abbr) v t)
                                  ASort n n0
                                sn3 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t)))
                              (sc3 g a1 c v
                                   w:T
                                        .sc3 g (asucc g a1) c w
                                          (sc3
                                               g
                                               ASort n n0
                                               c
                                               THeads
                                                 Flat Appl
                                                 vs
                                                 THead (Flat Appl) v (THead (Bind Abst) w t)))
                       suppose H
                          land
                            arity
                              g
                              c
                              THeads (Flat Appl) vs (THead (Bind Abbr) v t)
                              ASort n n0
                            sn3 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                       suppose H0sc3 g a1 c v
                       assume wT
                       suppose H1sc3 g (asucc g a1) c w
                         (H2consider H
                         we proceed by induction on H2 to prove 
                            land
                              arity
                                g
                                c
                                THeads
                                  Flat Appl
                                  vs
                                  THead (Flat Appl) v (THead (Bind Abst) w t)
                                ASort n n0
                              sn3
                                c
                                THeads
                                  Flat Appl
                                  vs
                                  THead (Flat Appl) v (THead (Bind Abst) w t)
                            case conj : H3:arity g c (THeads (Flat Appl) vs (THead (Bind Abbr) v t)) (ASort n n0) H4:sn3 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t)) 
                               the thesis becomes 
                               land
                                 arity
                                   g
                                   c
                                   THeads
                                     Flat Appl
                                     vs
                                     THead (Flat Appl) v (THead (Bind Abst) w t)
                                   ASort n n0
                                 sn3
                                   c
                                   THeads
                                     Flat Appl
                                     vs
                                     THead (Flat Appl) v (THead (Bind Abst) w t)
                                  (h1
                                     (h1
                                        by (sc3_arity_gen . . . . H0)
arity g c v a1
                                     end of h1
                                     (h2
                                        by (sc3_arity_gen . . . . H1)
arity g c w (asucc g a1)
                                     end of h2
                                     by (arity_appls_appl . . . . h1 . h2 . . . H3)

                                        arity
                                          g
                                          c
                                          THeads
                                            Flat Appl
                                            vs
                                            THead (Flat Appl) v (THead (Bind Abst) w t)
                                          ASort n n0
                                  end of h1
                                  (h2
                                     by (sc3_sn3 . . . . H1)
                                     we proved sn3 c w
                                     by (sn3_appls_beta . . . . H4 . previous)

                                        sn3
                                          c
                                          THeads
                                            Flat Appl
                                            vs
                                            THead (Flat Appl) v (THead (Bind Abst) w t)
                                  end of h2
                                  by (conj . . h1 h2)

                                     land
                                       arity
                                         g
                                         c
                                         THeads
                                           Flat Appl
                                           vs
                                           THead (Flat Appl) v (THead (Bind Abst) w t)
                                         ASort n n0
                                       sn3
                                         c
                                         THeads
                                           Flat Appl
                                           vs
                                           THead (Flat Appl) v (THead (Bind Abst) w t)
                         we proved 
                            land
                              arity
                                g
                                c
                                THeads
                                  Flat Appl
                                  vs
                                  THead (Flat Appl) v (THead (Bind Abst) w t)
                                ASort n n0
                              sn3
                                c
                                THeads
                                  Flat Appl
                                  vs
                                  THead (Flat Appl) v (THead (Bind Abst) w t)
                         that is equivalent to 
                            sc3
                              g
                              ASort n n0
                              c
                              THeads
                                Flat Appl
                                vs
                                THead (Flat Appl) v (THead (Bind Abst) w t)
                      we proved 
                         (land
                             arity
                               g
                               c
                               THeads (Flat Appl) vs (THead (Bind Abbr) v t)
                               ASort n n0
                             sn3 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t)))
                           (sc3 g a1 c v
                                w:T
                                     .sc3 g (asucc g a1) c w
                                       (sc3
                                            g
                                            ASort n n0
                                            c
                                            THeads
                                              Flat Appl
                                              vs
                                              THead (Flat Appl) v (THead (Bind Abst) w t)))
                      that is equivalent to 
                         (sc3
                             g
                             ASort n n0
                             c
                             THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                           (sc3 g a1 c v
                                w:T
                                     .sc3 g (asucc g a1) c w
                                       (sc3
                                            g
                                            ASort n n0
                                            c
                                            THeads
                                              Flat Appl
                                              vs
                                              THead (Flat Appl) v (THead (Bind Abst) w t)))

                      vs:TList
                        .c:C
                          .v:T
                            .t:T
                              .(sc3
                                  g
                                  ASort n n0
                                  c
                                  THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                                (sc3 g a1 c v
                                     w:T
                                          .sc3 g (asucc g a1) c w
                                            (sc3
                                                 g
                                                 ASort n n0
                                                 c
                                                 THeads
                                                   Flat Appl
                                                   vs
                                                   THead (Flat Appl) v (THead (Bind Abst) w t)))
             case AHead : a:A a0:A 
                the thesis becomes 
                vs:TList
                  .c:C
                    .v:T
                      .t:T
                        .(sc3
                            g
                            AHead a a0
                            c
                            THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                          (sc3 g a1 c v
                               w:T
                                    .sc3 g (asucc g a1) c w
                                      (sc3
                                           g
                                           AHead a a0
                                           c
                                           THeads
                                             Flat Appl
                                             vs
                                             THead (Flat Appl) v (THead (Bind Abst) w t)))
                () by induction hypothesis we know 
                   vs:TList
                     .c:C
                       .v:T
                         .t:T
                           .sc3 g a c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                             (sc3 g a1 c v
                                  w:T
                                       .sc3 g (asucc g a1) c w
                                         (sc3
                                              g
                                              a
                                              c
                                              THeads
                                                Flat Appl
                                                vs
                                                THead (Flat Appl) v (THead (Bind Abst) w t)))
                (H0) by induction hypothesis we know 
                   vs:TList
                     .c:C
                       .v:T
                         .t:T
                           .sc3 g a0 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                             (sc3 g a1 c v
                                  w:T
                                       .sc3 g (asucc g a1) c w
                                         (sc3
                                              g
                                              a0
                                              c
                                              THeads
                                                Flat Appl
                                                vs
                                                THead (Flat Appl) v (THead (Bind Abst) w t)))
                    assume vsTList
                    assume cC
                    assume vT
                    assume tT
                      we must prove 
                            (sc3
                                g
                                AHead a a0
                                c
                                THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                              (sc3 g a1 c v
                                   w:T
                                        .sc3 g (asucc g a1) c w
                                          (sc3
                                               g
                                               AHead a a0
                                               c
                                               THeads
                                                 Flat Appl
                                                 vs
                                                 THead (Flat Appl) v (THead (Bind Abst) w t)))
                      or equivalently 
                            (land
                                arity
                                  g
                                  c
                                  THeads (Flat Appl) vs (THead (Bind Abbr) v t)
                                  AHead a a0
                                d:C
                                  .w:T
                                    .sc3 g a d w
                                      is:PList
                                           .drop1 is d c
                                             (sc3
                                                  g
                                                  a0
                                                  d
                                                  THead
                                                    Flat Appl
                                                    w
                                                    lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t))))
                              (sc3 g a1 c v
                                   w:T
                                        .sc3 g (asucc g a1) c w
                                          (sc3
                                               g
                                               AHead a a0
                                               c
                                               THeads
                                                 Flat Appl
                                                 vs
                                                 THead (Flat Appl) v (THead (Bind Abst) w t)))
                       suppose H1
                          land
                            arity
                              g
                              c
                              THeads (Flat Appl) vs (THead (Bind Abbr) v t)
                              AHead a a0
                            d:C
                              .w:T
                                .sc3 g a d w
                                  is:PList
                                       .drop1 is d c
                                         (sc3
                                              g
                                              a0
                                              d
                                              THead
                                                Flat Appl
                                                w
                                                lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t)))
                       suppose H2sc3 g a1 c v
                       assume wT
                       suppose H3sc3 g (asucc g a1) c w
                         (H4consider H1
                         we proceed by induction on H4 to prove 
                            land
                              arity
                                g
                                c
                                THeads
                                  Flat Appl
                                  vs
                                  THead (Flat Appl) v (THead (Bind Abst) w t)
                                AHead a a0
                              d:C
                                .w0:T
                                  .sc3 g a d w0
                                    is:PList
                                         .drop1 is d c
                                           (sc3
                                                g
                                                a0
                                                d
                                                THead
                                                  Flat Appl
                                                  w0
                                                  lift1
                                                    is
                                                    THeads
                                                      Flat Appl
                                                      vs
                                                      THead (Flat Appl) v (THead (Bind Abst) w t))
                            case conj : H5:arity g c (THeads (Flat Appl) vs (THead (Bind Abbr) v t)) (AHead a a0) H6:d:C.w0:T.(sc3 g a d w0)is:PList.(drop1 is d c)(sc3 g a0 d (THead (Flat Appl) w0 (lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t))))) 
                               the thesis becomes 
                               land
                                 arity
                                   g
                                   c
                                   THeads
                                     Flat Appl
                                     vs
                                     THead (Flat Appl) v (THead (Bind Abst) w t)
                                   AHead a a0
                                 d:C
                                   .w0:T
                                     .sc3 g a d w0
                                       is:PList
                                            .drop1 is d c
                                              (sc3
                                                   g
                                                   a0
                                                   d
                                                   THead
                                                     Flat Appl
                                                     w0
                                                     lift1
                                                       is
                                                       THeads
                                                         Flat Appl
                                                         vs
                                                         THead (Flat Appl) v (THead (Bind Abst) w t))
                                  (h1
                                     (h1
                                        by (sc3_arity_gen . . . . H2)
arity g c v a1
                                     end of h1
                                     (h2
                                        by (sc3_arity_gen . . . . H3)
arity g c w (asucc g a1)
                                     end of h2
                                     by (arity_appls_appl . . . . h1 . h2 . . . H5)

                                        arity
                                          g
                                          c
                                          THeads
                                            Flat Appl
                                            vs
                                            THead (Flat Appl) v (THead (Bind Abst) w t)
                                          AHead a a0
                                  end of h1
                                  (h2
                                      assume dC
                                      assume w0T
                                      suppose H7sc3 g a d w0
                                      assume isPList
                                      suppose H8drop1 is d c
                                        (h1
                                           (h1
                                              (h1
                                                 (H_y
                                                    by (H0 .)

                                                       c:C
                                                         .v:T
                                                           .t:T
                                                             .(sc3
                                                                 g
                                                                 a0
                                                                 c
                                                                 THeads
                                                                   Flat Appl
                                                                   TCons w0 (lifts1 is vs)
                                                                   THead (Bind Abbr) v t)
                                                               (sc3 g a1 c v
                                                                    w:T
                                                                         .sc3 g (asucc g a1) c w
                                                                           (sc3
                                                                                g
                                                                                a0
                                                                                c
                                                                                THeads
                                                                                  Flat Appl
                                                                                  TCons w0 (lifts1 is vs)
                                                                                  THead (Flat Appl) v (THead (Bind Abst) w t)))
                                                 end of H_y
                                                 (h1
                                                    by (lift1_bind . . . .)
                                                    we proved 
                                                       eq
                                                         T
                                                         lift1 is (THead (Bind Abbr) v t)
                                                         THead (Bind Abbr) (lift1 is v) (lift1 (Ss is) t)
                                                    we proceed by induction on the previous result to prove 
                                                       sc3
                                                         g
                                                         a0
                                                         d
                                                         THead
                                                           Flat Appl
                                                           w0
                                                           THeads
                                                             Flat Appl
                                                             lifts1 is vs
                                                             THead (Bind Abbr) (lift1 is v) (lift1 (Ss is) t)
                                                       case refl_equal : 
                                                          the thesis becomes 
                                                          sc3
                                                            g
                                                            a0
                                                            d
                                                            THead
                                                              Flat Appl
                                                              w0
                                                              THeads (Flat Appl) (lifts1 is vs) (lift1 is (THead (Bind Abbr) v t))
                                                             by (lifts1_flat . . . .)
                                                             we proved 
                                                                eq
                                                                  T
                                                                  lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                                                                  THeads (Flat Appl) (lifts1 is vs) (lift1 is (THead (Bind Abbr) v t))
                                                             we proceed by induction on the previous result to prove 
                                                                sc3
                                                                  g
                                                                  a0
                                                                  d
                                                                  THead
                                                                    Flat Appl
                                                                    w0
                                                                    THeads (Flat Appl) (lifts1 is vs) (lift1 is (THead (Bind Abbr) v t))
                                                                case refl_equal : 
                                                                   the thesis becomes 
                                                                   sc3
                                                                     g
                                                                     a0
                                                                     d
                                                                     THead
                                                                       Flat Appl
                                                                       w0
                                                                       lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                                                                      by (H6 . . H7 . H8)

                                                                         sc3
                                                                           g
                                                                           a0
                                                                           d
                                                                           THead
                                                                             Flat Appl
                                                                             w0
                                                                             lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t))

                                                                sc3
                                                                  g
                                                                  a0
                                                                  d
                                                                  THead
                                                                    Flat Appl
                                                                    w0
                                                                    THeads (Flat Appl) (lifts1 is vs) (lift1 is (THead (Bind Abbr) v t))
                                                    we proved 
                                                       sc3
                                                         g
                                                         a0
                                                         d
                                                         THead
                                                           Flat Appl
                                                           w0
                                                           THeads
                                                             Flat Appl
                                                             lifts1 is vs
                                                             THead (Bind Abbr) (lift1 is v) (lift1 (Ss is) t)

                                                       sc3
                                                         g
                                                         a0
                                                         d
                                                         THeads
                                                           Flat Appl
                                                           TCons w0 (lifts1 is vs)
                                                           THead (Bind Abbr) (lift1 is v) (lift1 (Ss is) t)
                                                 end of h1
                                                 (h2
                                                    by (sc3_lift1 . . . . . . H2 H8)
sc3 g a1 d (lift1 is v)
                                                 end of h2
                                                 (h3
                                                    by (sc3_lift1 . . . . . . H3 H8)
sc3 g (asucc g a1) d (lift1 is w)
                                                 end of h3
                                                 by (H_y . . . h1 h2 . h3)
                                                 we proved 
                                                    sc3
                                                      g
                                                      a0
                                                      d
                                                      THeads
                                                        Flat Appl
                                                        TCons w0 (lifts1 is vs)
                                                        THead
                                                          Flat Appl
                                                          lift1 is v
                                                          THead (Bind Abst) (lift1 is w) (lift1 (Ss is) t)

                                                    sc3
                                                      g
                                                      a0
                                                      d
                                                      THead
                                                        Flat Appl
                                                        w0
                                                        THeads
                                                          Flat Appl
                                                          lifts1 is vs
                                                          THead
                                                            Flat Appl
                                                            lift1 is v
                                                            THead (Bind Abst) (lift1 is w) (lift1 (Ss is) t)
                                              end of h1
                                              (h2
                                                 by (lift1_bind . . . .)

                                                    eq
                                                      T
                                                      lift1 is (THead (Bind Abst) w t)
                                                      THead (Bind Abst) (lift1 is w) (lift1 (Ss is) t)
                                              end of h2
                                              by (eq_ind_r . . . h1 . h2)

                                                 sc3
                                                   g
                                                   a0
                                                   d
                                                   THead
                                                     Flat Appl
                                                     w0
                                                     THeads
                                                       Flat Appl
                                                       lifts1 is vs
                                                       THead (Flat Appl) (lift1 is v) (lift1 is (THead (Bind Abst) w t))
                                           end of h1
                                           (h2
                                              by (lift1_flat . . . .)

                                                 eq
                                                   T
                                                   lift1 is (THead (Flat Appl) v (THead (Bind Abst) w t))
                                                   THead (Flat Appl) (lift1 is v) (lift1 is (THead (Bind Abst) w t))
                                           end of h2
                                           by (eq_ind_r . . . h1 . h2)

                                              sc3
                                                g
                                                a0
                                                d
                                                THead
                                                  Flat Appl
                                                  w0
                                                  THeads
                                                    Flat Appl
                                                    lifts1 is vs
                                                    lift1 is (THead (Flat Appl) v (THead (Bind Abst) w t))
                                        end of h1
                                        (h2
                                           by (lifts1_flat . . . .)

                                              eq
                                                T
                                                lift1
                                                  is
                                                  THeads
                                                    Flat Appl
                                                    vs
                                                    THead (Flat Appl) v (THead (Bind Abst) w t)
                                                THeads
                                                  Flat Appl
                                                  lifts1 is vs
                                                  lift1 is (THead (Flat Appl) v (THead (Bind Abst) w t))
                                        end of h2
                                        by (eq_ind_r . . . h1 . h2)
                                        we proved 
                                           sc3
                                             g
                                             a0
                                             d
                                             THead
                                               Flat Appl
                                               w0
                                               lift1
                                                 is
                                                 THeads
                                                   Flat Appl
                                                   vs
                                                   THead (Flat Appl) v (THead (Bind Abst) w t)

                                        d:C
                                          .w0:T
                                            .sc3 g a d w0
                                              is:PList
                                                   .drop1 is d c
                                                     (sc3
                                                          g
                                                          a0
                                                          d
                                                          THead
                                                            Flat Appl
                                                            w0
                                                            lift1
                                                              is
                                                              THeads
                                                                Flat Appl
                                                                vs
                                                                THead (Flat Appl) v (THead (Bind Abst) w t))
                                  end of h2
                                  by (conj . . h1 h2)

                                     land
                                       arity
                                         g
                                         c
                                         THeads
                                           Flat Appl
                                           vs
                                           THead (Flat Appl) v (THead (Bind Abst) w t)
                                         AHead a a0
                                       d:C
                                         .w0:T
                                           .sc3 g a d w0
                                             is:PList
                                                  .drop1 is d c
                                                    (sc3
                                                         g
                                                         a0
                                                         d
                                                         THead
                                                           Flat Appl
                                                           w0
                                                           lift1
                                                             is
                                                             THeads
                                                               Flat Appl
                                                               vs
                                                               THead (Flat Appl) v (THead (Bind Abst) w t))
                         we proved 
                            land
                              arity
                                g
                                c
                                THeads
                                  Flat Appl
                                  vs
                                  THead (Flat Appl) v (THead (Bind Abst) w t)
                                AHead a a0
                              d:C
                                .w0:T
                                  .sc3 g a d w0
                                    is:PList
                                         .drop1 is d c
                                           (sc3
                                                g
                                                a0
                                                d
                                                THead
                                                  Flat Appl
                                                  w0
                                                  lift1
                                                    is
                                                    THeads
                                                      Flat Appl
                                                      vs
                                                      THead (Flat Appl) v (THead (Bind Abst) w t))
                         that is equivalent to 
                            sc3
                              g
                              AHead a a0
                              c
                              THeads
                                Flat Appl
                                vs
                                THead (Flat Appl) v (THead (Bind Abst) w t)
                      we proved 
                         (land
                             arity
                               g
                               c
                               THeads (Flat Appl) vs (THead (Bind Abbr) v t)
                               AHead a a0
                             d:C
                               .w:T
                                 .sc3 g a d w
                                   is:PList
                                        .drop1 is d c
                                          (sc3
                                               g
                                               a0
                                               d
                                               THead
                                                 Flat Appl
                                                 w
                                                 lift1 is (THeads (Flat Appl) vs (THead (Bind Abbr) v t))))
                           (sc3 g a1 c v
                                w:T
                                     .sc3 g (asucc g a1) c w
                                       (sc3
                                            g
                                            AHead a a0
                                            c
                                            THeads
                                              Flat Appl
                                              vs
                                              THead (Flat Appl) v (THead (Bind Abst) w t)))
                      that is equivalent to 
                         (sc3
                             g
                             AHead a a0
                             c
                             THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                           (sc3 g a1 c v
                                w:T
                                     .sc3 g (asucc g a1) c w
                                       (sc3
                                            g
                                            AHead a a0
                                            c
                                            THeads
                                              Flat Appl
                                              vs
                                              THead (Flat Appl) v (THead (Bind Abst) w t)))

                      vs:TList
                        .c:C
                          .v:T
                            .t:T
                              .(sc3
                                  g
                                  AHead a a0
                                  c
                                  THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                                (sc3 g a1 c v
                                     w:T
                                          .sc3 g (asucc g a1) c w
                                            (sc3
                                                 g
                                                 AHead a a0
                                                 c
                                                 THeads
                                                   Flat Appl
                                                   vs
                                                   THead (Flat Appl) v (THead (Bind Abst) w t)))
          we proved 
             vs:TList
               .c:C
                 .v:T
                   .t:T
                     .sc3 g a2 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                       (sc3 g a1 c v
                            w:T
                                 .sc3 g (asucc g a1) c w
                                   (sc3
                                        g
                                        a2
                                        c
                                        THeads
                                          Flat Appl
                                          vs
                                          THead (Flat Appl) v (THead (Bind Abst) w t)))
       we proved 
          g:G
            .a1:A
              .a2:A
                .vs:TList
                  .c:C
                    .v:T
                      .t:T
                        .sc3 g a2 c (THeads (Flat Appl) vs (THead (Bind Abbr) v t))
                          (sc3 g a1 c v
                               w:T
                                    .sc3 g (asucc g a1) c w
                                      (sc3
                                           g
                                           a2
                                           c
                                           THeads
                                             Flat Appl
                                             vs
                                             THead (Flat Appl) v (THead (Bind Abst) w t)))