DEFINITION sc3_arity()
TYPE =
∀g:G.∀c:C.∀t:T.∀a:A.(arity g c t a)→(sc3 g a c t)
BODY =
assume g: G
assume c: C
assume t: T
assume a: A
suppose H: arity g c t a
(H_y)
by (sc3_arity_csubc . . . . H . .)
(drop1 PNil c c)→∀c2:C.(csubc g c c2)→(sc3 g a c2 (lift1 PNil t))
end of H_y
(h1)
by (drop1_nil .)
drop1 PNil c c
end of h1
(h2)
by (csubc_refl . .)
csubc g c c
end of h2
by (H_y h1 . h2)
we proved sc3 g a c (lift1 PNil t)
that is equivalent to sc3 g a c t
we proved ∀g:G.∀c:C.∀t:T.∀a:A.(arity g c t a)→(sc3 g a c t)