DEFINITION s_r()
TYPE =
∀k:K.∀i:nat.(eq nat (s k (r k i)) (S i))
BODY =
assume k: K
we proceed by induction on k to prove ∀i:nat.(eq nat (s k (r k i)) (S i))
case Bind : :B ⇒
the thesis becomes ∀i:nat.(eq nat (S i) (S i))
assume i: nat
by (refl_equal . .)
we proved eq nat (S i) (S i)
that is equivalent to eq nat (s (Bind __2) (r (Bind __2) i)) (S i)
∀i:nat.(eq nat (S i) (S i))
case Flat : :F ⇒
the thesis becomes ∀i:nat.(eq nat (S i) (S i))
assume i: nat
by (refl_equal . .)
we proved eq nat (S i) (S i)
that is equivalent to eq nat (s (Flat __2) (r (Flat __2) i)) (S i)
∀i:nat.(eq nat (S i) (S i))
we proved ∀i:nat.(eq nat (s k (r k i)) (S i))
we proved ∀k:K.∀i:nat.(eq nat (s k (r k i)) (S i))