DEFINITION r_arith1()
TYPE =
∀k:K
.∀i:nat.∀j:nat.(eq nat (minus (r k (S i)) (S j)) (minus (r k i) j))
BODY =
assume k: K
assume i: nat
assume j: nat
(h1)
by (refl_equal . .)
we proved eq nat (minus (r k i) j) (minus (r k i) j)
eq nat (minus (S (r k i)) (S j)) (minus (r k i) j)
end of h1
(h2)
by (r_S . .)
eq nat (r k (S i)) (S (r k i))
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat (minus (r k (S i)) (S j)) (minus (r k i) j)
we proved
∀k:K
.∀i:nat.∀j:nat.(eq nat (minus (r k (S i)) (S j)) (minus (r k i) j))